Скалярное произведение векторов.

 

Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними:

ab = |a||b| cosφ . (5.4)

Обозначения скалярного произведения: ab, (ab), a·b .

 

Свойства скалярного произведения:

1. ab =|a| праb.

 

Доказательство. По свойству проекции праb = |b| cosφ, следовательно, ab = |a| праb.

 

2. ab = 0 a b. 3. ab = ba .

4. (ka)b = k(ab).

5. (a + b)c = ac + bc .

6. a2 = aa = |a|2 , где а2 называется скалярным квадратом вектора а.

7. Если векторы а и b определены своими декартовыми координатами

a = {X1, Y1, Z1}, b = {X2, Y2, Z2},

то ab= X1X2 + Y1Y2 + Z1Z2 . (5.5)

Доказательство. Используя формулу (5.3), получим:

ab = (X1i + Y1j + Z1k)(X2i + Y2j + Z2k) .

Используя свойства 4 и 5, раскроем скобки в правой части полученного равенства:

ab = X1X2ii +Y1Y2jj + Z1Z2kk + X1Y2ij +X1Z2ik + Y1X2ji + Y1Z2jk + Z1X2ki + Z1Y2kj.

Но ii = jj = kk = 1 по свойству 6, ij = ji = ik = ki = jk = kj= 0 по свойству 2, поэтому

ab= X1X2 + Y1Y2 + Z1Z2 .

 

8. cosφ = . (5.6)

Замечание. Свойства 2, 3, 4 доказываются из определения 5.14, свойства 5, 6 – из свойств проекции, свойство 8 – из свойства 7 и свойств направляющих косинусов.

 

Пример.

a = {1, -5, 12}, b = {1, 5, 2}. Найдем скалярное произведение векторов аи b :

ab = 1·1 + (-5)·5 + 12·2 = 1 – 25 + 24 = 0. Следовательно, векторы а и b ортогональны.

 

 

Лекция 6.

Векторное и смешанное произведение векторов, их основные свойства и геометрический смысл. Координатное выражение векторного и смешанного произведения. Условия коллинеарности и компланарности векторов.

 

Будем называть три вектора а,b,c, для которых определен порядок следования, тройкой (или упорядоченной тройкой) векторов.

 

Определение 6.1. Тройка некомпланарных векторов abc называется правой (левой), если после приведения к общему началу вектор с располагается по ту сторону от плоскости, определяемой векторами а и b, откуда кратчайший поворот от а к b кажется совершающимся против часовой стрелки (по часовой стрелке).

с с

 
 


b a