Теоретические упражнения

1. Доказать, что функция монотонно возрастает на отрезке: а) ; б) Следует ли из монотонности дифференцируемой функции монотонность ее производной?

2. Доказать теорему: если функции и дифференцируемы на отрезке и , а , то .

Дать геометрическую интерпретацию теоремы.

У к а з а н и е. При доказательстве теоремы установить и использовать монотонность функции .

3. Доказать неравенство для трех случаев:

а) ;

б) ;

в) .

Дать геометрическую интерпретацию неравенства.

4. Исходя из определений минимума и максимума, доказать, что функция

имеет в точке минимум, а функция

не имеет в точке экстремума.

5. Исследовать на экстремум в точке функцию , считая, что производная не существует, но функция непрерывна в точке и , .— натуральное число.

6. Исследовать знаки максимума и минимума функции и выяснить условия, при которых уравнение имеет а) три различных действительных корня; б) один действительный корень.

7. Определить «отклонение от нуля» многочлена на отрезке , т. е. найти на этом отрезке наибольшее значение функции .

8. Установить условия существования асимптот у графика рациональной функции.