ПРЕДЕЛЫ

Постоянная является пределом функции в точке , если их разность во всех точках, кроме, по абсолютному значению остается меньше бесконечно малого положительного числа e.

Если для <e, то .

Практическое вычисление пределов основывается на следующих теоремах:

Если существуюти то

¯ ±

¯ ×

¯ (при ≠0).

 

Используют также следующие пределы:

- первый замечательный предел

- второй замечательный предел.

 

Иногда в процессе отыскания предела при замене аргумента определенным значением функция получает выражение или - неопределенность. Хотя это выражение не имеет определенного смысла, функция может иметь конечный предел при данном стремлении аргумента. Это становится очевидным, если функцию преобразовать: разложить ее на множители, или поделить на аргумент, или умножить на сопряженное выражение, и т.д.

Например:

ü при замене преобразовывается в неопределенность .

Раскрыть неопределенность можно, поделив все члены выражения, стоящего под знаком предела, на высшую степень аргумента, то есть на :

=.

 

ü - неопределенность.

Раскрыть данную неопределенность можно, разложив выражения, стоящие в числителе и знаменателе под знаком предела, на множители, то есть:

ü - неопределенность.

Умножив и поделив выражение, стоящее под знаком предела, на сопряженное выражение , получаем следующее выражение:

=.

 

Найти следующие пределы:

 

1.1. . (Ответ: 3) 1.6. . (Ответ: 9/2)
1.2. . (Ответ: 1000) 1.7. . (Ответ: 1/3)
1.3. . (Ответ: - ) 1.8. . (Ответ: )
1.4. . (Ответ: ) 1.9. . (Ответ: 1)
1.5. . (Ответ: 0) 1.10. . (Ответ: 4)
1.11. . (Ответ: 0) 1.21. . (Ответ: 1/2)
1.12. . (Ответ: 0) 1.22 . (Ответ: 0,6)
1.13. . (Ответ: 1/3) 1.23. . (Ответ: 4)
1.14. . (Ответ: 1/2) 1.24. . (Ответ: 0)
1.15. . (Ответ: 0) 1.25. . (Ответ: 4)
1.16. . (Ответ: 1/4)   1.26. . (Ответ: e=2,718)  
1.17. . (Ответ: ) 1.27. . (Ответ: 1)
1.18. . (Ответ: 3) 1.28. . (Ответ: e3)
1.19. . (Ответ: 1) 1.29. . (Ответ: 1/2)
1.20. . (Ответ: 3) 1.30. . (Ответ: 1/3)