Краткие теоретические сведения.

Тема 1. Определители.

Квадратной матрицей порядканазывается квадратная таблица из чисел (, ): , состоящая из строк и столбцов. У квадратной матрицы различают главную диагональ: и побочную диагональ: . Любой квадратной матрице порядка можно поставить в соответствие число , равное алгебраической сумме слагаемых, составленных определённым образом из элементов матрицы ,называемое определителем матрицы. Кратко обозначается , .

Определителем 1-ого порядка называется число .

Определителем 2-ого порядка называется число

.

Определителем 3-его порядка называется число

.

Минором элемента называется определитель, полученный из определителя вычёркиванием -ой строки и -ого столбца.

Алгебраическим дополнением элемента называется его минор , взятый со знаком :

.

Определителем порядка называется число

Разложением определителя по -ой строке () называется соотношение: .

Разложением определителяпо-ому столбцу () называется соотношение:

Определители обладают следующими свойствами:

1) определитель не изменится при замене всех его строк столбцами с теми же номерами;

2) определитель изменит знак на противоположный, если переставить местами любые две строки (два столбца) определителя;

3) общий множитель элементов какой-либо строки (столбца) можно вынести за знак определителя;

4) определитель равен нулю, если он содержит нулевую строку (столбец), две одинаковые или пропорциональные строки (столбца);

5) определитель не изменится, если к какой-либо строке (столбцу) прибавить другую строку (столбец), умноженную на любое число;

6) определитель треугольного вида (когда все элементы, лежащие по одну сторону одной из его диагоналей равны нулю) равен произведению диагональных элементов: .

Тема 2. Матрицы.

Матрицей размера называется прямоугольная таблица из чисел (, ): , состоящая из строк и столбцов. Если необходимо указать размеры матрицы, то пишут .

Если , то матрица называется квадратной.

Нулевой называется матрица , все элементы которой равны нулю, например: . Единичной называется квадратная матрица , на главной диагонали которой стоят единицы, а все остальные элементы равны нулю, например: . Треугольной называется квадратная матрица , все элементы которой расположенные по одну сторону от главной диагонали равны нулю, например: . Трапециевидной (ступенчатой) называется матрица , все элементы которой, расположенные ниже элементов равны нулю, например: .

Матрицы и называются равными и пишут , если они одинакового размера и их соответствующие элементы равны: ,,.

Матрицы можно транспонировать, складывать, вычитать, умножать на число, умножать на другую матрицу.

Транспонированной к матрице называется матрица , столбцами которой являются соответствующие строки матрицы .

Суммой (разностью) матриц и одного размера , называется матрица того же размера, для которой:

, ,.

Произведением матрицы размера на число называется матрица того же размера, для которой: , , .

Линейной комбинацией матриц иодного размера , называется матрица того же размера (и - произвольные числа), для которой: , ,,

Произведением матрицы на матрицу называется матрица , каждый элемент которой вычисляется по правилу:

, , .

Операция умножения матрицы на матрицу определена не для всех матриц, а только для таких у которых число столбцов левой матрицы равно числу строк правой матрицы . Такие матрицы называются согласованнымидля умножения. Поэтому прежде чем выполнять операцию умножения матрицы на матрицу следует проверить их согласованность для умножения и определить размерность матрицы-произведения (если умножение матриц возможно): . Особенность операции умножения матриц состоит в том, что в общем случае: , т.е. переместительное свойство места не имеет.

Элементарными преобразованиями матрицы называются:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число;

4) вычёркивание нулевой строки (столбца).

Матрицы и , полученные одна из другой в результате элементарных преобразований называются эквивалентнымии пишут .

Обратнойк квадратной матрице порядка , называется матрица того же порядка, если: , где - единичная матрица порядка .

Квадратная матрица называется невырожденной, если её определитель . Обратная матрица всегда существует для невырожденных матриц.

Основными методами вычисления обратной матрицы являются:

Метод присоединённой матрицы. Если-невырожденная матрица, то , где - присоединённая матрица, для которой: . Здесь - алгебраические дополнения элементов матрицы .

В частности, если , то

Метод элементарных преобразований. Для данной квадратной матрицыпорядка строится прямоугольная матрица размера приписыванием к справа единичной матрицы. Далее, с помощью элементарных преобразований над строками, матрица приводится к виду, что всегда возможно, если - невырожденная.

Матричными называются уравнения вида: , , ,

где матрицы- известны, матрица - неизвестна. Если квадратные матрицы и - невырожденные, то решения матричных уравнений записываются, соответственно, в виде: , , .

Минором -ого порядка матрицы размера называется определитель квадратной матрицы порядка , образованной элементами матрицы , стоящими на пересечении произвольно выбранных её строк и столбцов . Максимальный порядок отличных от нуля миноров матрицы , называется её рангом и обозначается или , а любой минор порядка , отличный от нуля – базисным минором.

Тема 3. Системы линейных уравнений.

…Система уравнений вида: называется системой линейных уравнений с неизвестными. Числа называются коэффициентами системы, - свободными членами системы, - неизвестными системы.

В матричной форме система имеет вид: , где ,,.Здесь -матрица системы, -матрица-столбец неизвестных,-матрица-столбец свободных членов.

Если , то система называется однородной, в противном случае неоднородной.

Система, матрица которой является треугольной с диагональными элементами , называется треугольной. Система, матрица которой является трапециевидной, называется трапециевидной.

Решением системы называется всякий упорядоченный набор чисел , обращающий каждое уравнение системы в равенство. Совокупность всех решений называется множеством решений системы.

Система называется совместной, если она имеет, по крайней мере, одно решение; определённой, если она имеет только одно решение; неопределённой, если она имеет бесконечно много решений; несовместной, если она не имеет решений.

Однородная система уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение . Треугольная система является определённой, трапециевидная система – неопределённой.

Две системы называются эквивалентными, если множества их решений совпадают.

Элементарными преобразованиями систем уравнений называются:

1) перестановка уравнений;

2) перестановка местами слагаемых в каждом из уравнений системы;

3) умножение уравнения на число, отличное от нуля;

4)прибавление к уравнению другого, умноженного на любое число;

5) вычёркивание уравнения вида: .

Основными точными методами решения систем линейных уравнений являются методы: Крамера, обратной матрицы и Гаусса.

Если число уравнений в системе совпадает с числом неизвестных и определитель матрицы системы , то система имеет единственное решение, которое можно найти:

а) методом Крамера по формулам: , , где - определитель, получаемый из определителя матрицы системы заменой -ого столбца на столбец свободных членов;

б) методом обратной матрицы по формуле .

Методом Гаусса находят решение произвольной системы линейных уравнений. Метод состоит в приведении системы уравнений, с помощью элементарных преобразований, к системе специального вида, эквивалентной исходной, решение которой очевидно. Преобразования по методу Гаусса выполняют в два этапа. Первый этап называют прямым ходом, второй - обратным.

В результате прямого хода выясняют: совместна или нет система и если совместна то, сколько имеет решений - одно или бесконечно много, а также, в случае бесконечного множества решений, указывают базисные и свободные неизвестные для записи общего решения системы. Преобразования прямого хода выполняют, как правило, над расширенной матрицей системы , которую получают, приписывая справа к матрице системы столбец свободных членов . В результате элементарных преобразований строк и перестановкой столбцов, матрица системы должна быть приведена к матрице треугольного или трапециевидного вида с элементами . При этом, система уравнений, матрица которой , является треугольной с диагональными элементами , будет иметь единственное решение; система уравнений, матрица которой , является трапециевидной с элементами , будет иметь бесконечно много решений. Если, при выполнении преобразований расширенной матрицы , в преобразованной матрице появится строка , где , то это говорит о несовместности исходной системы уравнений. Базисные неизвестные указывают, выписывая базисный минор преобразованной матрицы системы . Базисными являются неизвестные преобразованной системы, столбцы коэффициентов при которых образуют базисный минор (определитель максимального порядка, отличный от нуля). Свободными являются неизвестные, не являющиеся базисными.

В результатеобратного хода находят решение системы, записывая его в виде общего решения, если их бесконечно много. Преобразования обратного хода часто выполняют, над уравнениями системы, соответствующей последней расширенной матрице прямого хода. В случае единственного решения, его получают, находя последовательно значения всех неизвестных из уравнений системы, начиная с последнего. В случае, когда решений бесконечно много, их записывают в виде общего решения. Для этого свободным неизвестным придают разные произвольные постоянные значения: , ,…, , и последовательно из уравнений системы, начиная с последнего, находят значения всех базисных неизвестных. Полученное решение называют общим. Придавая произвольным постоянным, конкретные значения, находят частные решения системы уравнений.

Тема 4. Системы векторов. N-мерное векторное пространство. Евклидово пространство.

Арифметическим вектором называют упорядоченную совокупность из чисел: и обозначают . Числа называют компонентами вектора , число компонент называют его размерностью.

Векторы и называют равными, если они одинаковой размерности и их соответствующие компоненты равны: ,.

Суммой векторов и одной размерности, называют вектор той же размерности, для которого: , .

Произведением вектора на число называют вектор той же размерности, для которого: , .

Линейной комбинациейвекторов и одной размерности, называют вектор той же размерности (и - произвольные числа), для которого: , .

Множество всех -мерных векторов, в котором введены операции сложения и умножения на число, удовлетворяющие определённым требованиям (аксиомам) называют векторнымпространствоми обозначают .

Систему векторов называют линейно зависимой, если найдутся числа , одновременно, такие, что (где - нулевой вектор), в противном случае, систему называют линейно независимой.

Базисом системы векторов называют упорядоченную систему векторов , удовлетворяющую условиям:

1) , ; 2) система линейно независима; 3) для любого вектора найдутся числа такие, что . Коэффициенты , однозначно определяемые вектором , называют координатами вектора в базисе , а формулу называют разложениемвектора по базису и пишут: .

В пространстве базисом является каждая упорядоченная система из линейно независимых векторов: . Формулу называют разложениемвектора по базису , коэффициенты - координатами вектора в базисеи пишут .

Всякая упорядоченная система из векторов образует базис , если определитель, столбцами которого являются компоненты векторов , не равен нулю.

Пространство , в котором введено скалярное произведение векторов, удовлетворяющее определённым требованиям (аксиомам), называют евклидовым. Скалярным произведением двух векторов и называют число: .

Тема 5. Линейные операторы. Собственные числа и векторы.

Операторомназывается закон (правило), по которому каждому вектору ставится в соответствие единственный вектор , и пишут или В дальнейшем, рассматривается случай (преобразование пространства). Оператор называется линейным, если для любых векторов и действительных чисел выполнено условие: .

Если - базис пространства , томатрицей линейного оператора в базисе называется квадратная матрица порядка , столбцами которой являются столбцы координат векторов . Между линейными операторами, действующими в и квадратными матрицами порядка , существует взаимно однозначное соответствие, что позволяет оператор представить в матричном виде , где - матрицы-столбцы координат векторов , - матрица оператора в базисе .

Для линейных операторов, действующих в вводятся следующие операции: 1) сложение операторов:; 2) умножение операторов на число:; 3) умножение операторов: .

Обратным к оператору называется оператор такой, что , где - единичный (тождественный)оператор, реализующий отображение . Обратный оператор существует только для невырожденных операторов (операторов, матрица которых является невырожденной). Все, рассмотренные выше, действия над линейными операторами выполняют, выполняя аналогичные действия над их матрицами.

Пусть число и вектор , , таковы, что выполняются равенства: или . Тогда число называется собственным числом линейного оператора (или матрицы ), а вектор - собственным вектором этого оператора (или матрицы), соответствующим собственному числу . Равенство может быть записано в виде , где - единичная матрица порядка , - матрица-столбец координат собственного вектора , соответствующего собственному числу , - нулевая матрица-столбец.

Характеристическим уравнением оператора (или матрицы ) называется уравнение: .

Множество собственных чисел оператора (или матрицы) совпадает с множеством корней его характеристического уравнения: , а множество собственных векторов, отвечающих собственному числу , совпадает с множеством ненулевых решений матричного уравнения: .

Тема 6. Квадратичные формы.

Квадратичной формой ( или кратко ) от -переменных называется однородный многочлен второй степени с действительными коэффициентами: , где . Квадратичную форму всегда можно записать в матричном виде: , где - матрица квадратичной формы (являющаяся симметрической, так как выполняется условие ), - матрица-столбец, - матрица-строка, составленные из переменных .

Квадратичная форма называется невырожденной, если её матрица является невырожденной.

Квадратичная форма называется канонической, если она имеет вид:

.

Всякую квадратичную форму всегда можно привести к каноническому виду, например, методами Лагранжа и ортогональных преобразований.

Квадратичные формы подразделяют на различные типы в зависимости от множества их значений. Квадратичная форма называется:

положительно (отрицательно) определённой, если для любого выполняется неравенство (); неотрицательно (неположительно) определённой, если для любого выполняется неравенство (), причём существует , для которого ; знакопеременной (или неопределённой), если существуют такие и , что и .

Невырожденная квадратичная форма может быть либо положительно определённой, либо отрицательно определённой, либо знакопеременной. Тип невырожденной квадратичной формы можно определить, проверяя знаки главных миноров матрицы квадратичной формы.

Пусть , где - матрица квадратичной формы. Главными минорами матрицы называются миноры порядка

(), составленные из первых строк и первых столбцов матрицы: , , , .

Критерием знакоопределённости невырожденной квадратичной формы является критерий Сильвестра:

- квадратичная форма положительно определена тогда и только тогда, когда все главные миноры её матрицы положительны, т.е. , , , ;

- квадратичная форма отрицательно определена тогда и только тогда, когда для всех главных миноров её матрицы выполняются неравенства: , , , , (все миноры нечётного порядка отрицательны, а чётного – положительны) ;

- квадратичная форма знакопеременна тогда и только тогда, когда для главных миноров её матрицы выполняется хотя бы одно из условий: один из главных миноров равен нулю, один из главных миноров чётного порядка отрицателен, два главных минора нечётного порядка имеют разные знаки .

Тема 7. Векторная алгебра.

Вектором (геометрическим) называется направленный отрезок, задаваемый упорядоченной парой точек (началом и концом вектора). Обозначают вектор или . Расстояние между началом и концом вектора называется его длиной и обозначается или . Углом между векторами и называется угол , , на который следует повернуть один из векторов, чтобы его направление совпало с направлением другого вектора, при условии, что их начала совпадают. Проекцией вектора на вектор называется число .

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Векторы называются компланарными, если они расположены в одной плоскости или в параллельных плоскостях.

Векторы и называются равными и пишут , если они коллинеарны, одинаково направлены и имеют равные длины. Векторы и называются противоположными и пишут , если они коллинеарны, направлены в разные стороны и имеют равные длины.

Суммой векторов и называется вектор , соединяющий начало вектора и конец вектора , при условии, что конец вектора совпадает с началом вектора (правило треугольника). Произведением вектора на действительное число называется вектор :

1) коллинеарный вектору ; 2) имеющий длину ; 3) направленный одинаково с вектором , если , и противоположно, если .

Ортом вектора , называется вектор , имеющий единичную длину и направление вектора : .

Базисом в пространстве называется упорядоченная тройка некомпланарных векторов, базисом на плоскости – упорядоченная пара неколлинеарных векторов, базисом на прямой – любой ненулевой вектор на этой прямой. Базис, в котором все векторы попарно перпендикулярны и имеют единичную длину, называется ортонормированным. Векторы ортонормированного базиса обозначаются: и , и называются базисными ортами. Различают правый и левый ортонормированные базисы. Базис -называется правым, если кратчайший поворот от к совершается против хода часовой стрелки, в противном случае он – левый. Базис -называется правым, если из конца вектора кратчайший поворот от вектора к