Линейные функции.

Рассмотрим произвольное линейное пространство над полем . Отображение называется линейной функцией, если

Нетрудно проверить, что если и линейные функции, то и , такие что и , так же являются линейными функциями. Поэтому, множество всех линейных функций, заданных в образуют линейное пространство относительно их сложения и умножения числа на функцию.

ЛЕММА. (о существовании и единственности линейной функции). Для любого базиса линейного пространства и любого набора существует единственная линейная функция , такая, что

.

ДОКАЗАТЕЛЬСТВО. Пусть произвольный вектор из . Зададим отображение следующим образом:

,

Очевидно, что .

Проверим, что линейная функция. Пусть . Тогда

.

Докажем единственность. Предположим, что существует другая линейная функция , удовлетворяющая условию леммы, т. е.

. Тогда . □

Пусть унитарное пространство. Положим по определению для любых и фиксированного . Тогда имеет место

ТЕОРЕМА. Функция является линейной и однозначно определяется по . Обратно, для каждой линейной функции существует элемент , такой что .

ДОКАЗАТЕЛЬСТВО. Вначале докажем линейность функции. Действительно

.

Пусть теперь , тогда . При имеем , т. е. . Тем самым показано, что каждому соответствует единственная линейная функция .

Наконец, пусть произвольная линейная функция, заданная в пространстве . Докажем, что существует элемент , такой, что для любых . Пусть ортонормированный базис пространства . По лемме, существует единственный набор , такой, что . Рассмотрим вектор

,

тогда . Для произвольного вектора , имеем

. □