Отношения между множествами.

Наглядно отношения между множествами изображают при помощи особых чертежей, называемых кругами Эйлера (или диаграммами Эйлера – Венна).

Для этого множества, сколько бы они ни содержали элементов, представляют в виде кругов или любых других замкнутых кривых (фигур) – рис.1.

 

 

 

 

 


Рис. 1.

 

1. Пусть даны два множества: X={a; b; c; d} и Y={l; k; m; b; c}. Множества Х и Y содержат некоторые одинаковые элементы, а именно “b” и “c” . В данном случае говорят, что множества X иY находятся в отношении пересечения. С помощью кругов Эйлера данное отношение можно представить в виде рис. 2.

 

X Y B1 B2

 

 

Рис. 2. Рис. 3.

 

Пусть даны множества B1={1; 2; 3} и B2={4; 5; 6}.

Данные множества различны, у них нет одинаковых элементов. В таком случае говорят, что множества B1 и B2 находятся в отношении непересечения.

С помощью кругов Эйлера данное отношение показано на рис. 3.

Пусть даны множества A={a; b; c; d; e} и B={a; b; c}.

Очевидно, что эти множества пересекаются; кроме того, каждый элемент
множества В является в то же время (одновременно) и элементом множества А. Тогда говорят, что множество В ВКЛЮЧЕНО в множество А, или что В есть ПОДМНОЖЕСТВО множества А.

Определение 1.

Множество В является подмножеством множества А тогда и только тогда, когда каждый элемент множества В является элементом множества А.

Отношение “включено” обозначается знаком Ì. Соответственно отношение “включает” – знаком É. Определение 1 символически записывается так: ВÌА или АÉВ.

Из определения подмножества следует, что всякое непустое множество А содержит по крайней мере два множества: Ø и А, которые называются несобственными подмножествами множества. Все остальные подмножества (если они существуют) называются собственными подмножествами множества. То есть, если В – собственное подмножество множества А, то имеем: ØÌ ВÌА, или иначе: АÉВÉ Ø.

4. Пусть даны множества C={x; y; z}, D={x; y; z}, которые состоят из одних и тех же элементов. В таком случае говорят, что множества С и D равны и пишут C=D.

Определение 2.

Множества С и D называются равными, если они состоят из одних и тех же элементов.

Используя понятие “включено”, можно дать другое определение равенства множеств.

Определение 3.

Множества C и D называются равными тогда и только тогда, когда множество С является подмножеством множества D, и наоборот.

Универсальное множество.

Пусть U (или T – total) – некоторое фиксированное множество. Рассмотрим только такие множества А, В, С,…, которые являются подмножествами множества U. В этом случае множество U называется универсальным множеством всех множеств А, В, С,…

Примером универсального множества может служить множество действительных чисел, множество людей на планете Земля.

1.2. Операции над множествами.

 

Рассмотрим некоторые операции над множествами.