Необходимое усл-е экстремума.

Для того, чтобы ф-ция y=f(x) имела экстремум в точке х0, необходимо, чтобы её производная в этой точке равнялась 0 (f’(x0)=0) или не существовала.

Точки, в кот.выполнено необх.усл-е экстремума,т.е. производная равна нулю или не сущ-ет, наз-ся критическими (или стационарными). Эти точки должны входить в обл.определения ф-ции.(Если в точке х0 дифференцируемая функция y=f(x) имеет экстремум, то в нек-ой окрестности этой точки выполнены условия тео-мы Ферма, и, следовательно, производная фун-и в этой точке равна нулю.Т.е.f’(x0)=0. Но фун-я может иметь экстремум и в точках, в которых она не дифференцируема.)

Первое достаточное условие экстремума. Теорема. Если при переходе через точку х0 производная диф-мой фун-и y=f(x) меняет свой знак с плса на минус, то точка х0 есть точка максимума фун-и y=f(x), а если с минуса на плюс, - то точка минимума.

Доказательство.Пусть производная меняет знак с плюса на минус, т.е. в некотором интервале (а, х0) производная положительна (f’ (x) >0), а в некотором интервале (х0, b) – отрицательна (f’ (x) < 0). Тогда в соответствии с достаточным условием монотонности функции f(x) возрастает на интервале (а, х0) и убывает на интервале (х0, b). По определению возрастающей функции f(x0) > f(x) при всех х принадлежащем (а, х0), а по определению убывающей функции f(x) < f(x0) при всех х принадлежащем (х0, b), т.е. f(x0)≥f(x) при всех х принадлежащем(а, b), следовательно, х0 – точка максимума функции y=f(x).

Второе достаточное условие экстремума. Теорема. Если первая производная f’(x) дважды дифференцируемой функции равна нулю в некоторой точке х0, а вторая производная в этой точке f”(x0) положительна, то х0 есть точка минимума функции f’(x); если f”(x0) отрицательна, то в x0 – точка максимума.

Доказательство. Пусть f’(x0) =0, а f” (x0) >0. Это означает, что f” (x) = (f’(x0))’ >0 также и в некоторой окрестности точки х0, т.е. f’(x) возрастает на некотором интервале (a, b), содержащую точку х0. Но f’(x0) =0, следовательно, на интервале (а, х0) f’ (x) >0, т.е. f’ (x) при переходе через точку х0 меняет знак с минуса на плюс, т.е. х0 – точка минимума.