Дисперсия дискретной случайной величины

1. Понятие дисперсии.Математическое ожидание не дает полной характеристики закона распределения случайной величины. Покажем это на примере. Пусть заданы две дискретные случайные величины Х и Y своими законами распределения:

X -2
р 0,4 0,2 0,4

 

Y -100
р 0,3 0,4 0,3

 

Несмотря на то что математические ожидания величин X и Y одинаковы: М(Х)=М(Y)=0, возможные значения величин Х и Y «разбросаны» или «рассеяны» около своих математических ожида­ний по-разному: возможные значения величины X расположены гораздо ближе к своему математическому ожиданию, чем значения величины Y.

Укажем еще на один пример. При одинаковой средней величине годовых осадков одна местность может быть засушливой и неблагоприятной для сельскохозяйственных работ (нет дождей весной и летом), а другая — благоприятной для ведения сельского хозяйства.

Из сказанного вытекает необходимость введения новой числовой характеристики случайной величины, по которой можно судить о «рассеянии» возможных значений этой случайной величины.

Пусть задана дискретная случайная величина X:

X х1 х2 …. х n
р p1 p2 …. p n

Определение 1. Отклонением случайной величины X от ее математического ожидания М(Х) (или просто отклонением случайной величины X) называют случайную величину Х- М(Х).

Видно, что для того, чтобы отклонение случайной величины X приняло значение x1 - М(Х), достаточно, чтобы случайная величина X приняла значение x1. Вероятность же этого события равна p1; следовательно, и вероятность того, что отклонение случайной величины X примет значение x1- М(Х), также равна p1. Аналогично обстоит дело и для остальных возможных значений отклонения случайной величины X. Используя это, запишем закон распределения отклонения случайной величины X:

Х- М(Х) Х1- М(Х) Х2 - М(Х) …. Хп - М(Х)
р p1 p2 …. p n

Вычислим теперь математическое ожидание отклонения Х- М(Х). Пользуясь свойствами 5 и 1 (подразд. 9.2, п. 2), получаем

М[Х - М(Х)] = М(Х) - М(Х) = 0. Следовательно, справедлива следующая теорема.

Теорема 9.2. Математическое ожидание отклонения Х- М(Х) равно нулю:

М[Х-М(Х)] = 0.

Из теоремы видно, что с помощью отклонения Х- М(Х) не удается определить среднее отклонение возможных значений величины Xот ее математического ожидания, т.е. степень рассеяния величины X. Это объясняется взаимным погашением положительных и отрицательных возможных значений отклонения. Однако можно освободиться от этого недостатка, если рассматривать квадрат отклонения случайной величины X.

Запишем закон распределения случайной величины [X- М(Х)]2 (рассуждения те же, что и в случае случайной величины Х- М(Х)).

[Х-М(Х)]2 [ Х1- М(Х)] 2 [Х2 - М(Х)] 2 …. [Хп-М(Х)] 2
р p1 p2 …. p n

Определение 2. Дисперсией D(Х) дискретной случайной величины X называют математическое ожидание квадрата отклонения случайной величины X от ее математического ожидания:

D(Х) = М[(Х-М(Х))2].

Из закона распределения величины [Х- М(Х)]2 следует, что D(X) =

= [Х1- М(Х)]2p1+ [Х2- М(Х)]2p2+ ... + [ Хn- М(Х)]2pn.

2. Свойства дисперсии дискретной случайной величины.

1. Дисперсия дискретной случайной величины X равна разности между математическим ожиданием квадрата величины X и квадратом ее математического ожидания:

D(X) = М(Х2)2(Х).

Действительно, используя свойств математического ожидания, имеем

D(X) = М[(Х - М(Х))2] = М[Х2 -2ХМ(Х) + М2(Х)] =

= М(Х2)-2М(Х)×М(Х) + М2(Х)= М(Х2)-2 М2(Х) + М2(Х)= М(Х2)- -М2(Х).

С помощью этого свойства и свойства математического ожидания устанавливаются следующие свойства.

2.Дисперсия постоянной величины С равна нулю.

3.Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат: D(CX) =C2 D(X).

4.Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин: М(Х+Y) = D (Х) + D (Y).

Методом математической индукции это свойство распространяется и на случай любого конечного числа слагаемых.

Следствием свойств 3 и 4 является свойство 5.

5. Дисперсия разности двух независимых случайных величин X и Y равна сумме их дисперсий: М(Х-Y) = D (Х) + D (Y).

Пример 9.6. Дисперсия случайной величины X равна 3. Найти дисперсию следующих величин: а) --3 X; б) 4 X + 3.

Согласно свойствам 2, 3 и 4 дисперсии имеем

а) D(-3Х) = 9D(Х) = 9×3 = 27;

б) D (4Х+ 3) = D(4Х) + D(3) = 16D(Х) + 0 = 16×3 = 48.