Обратная матрица. Решение матричных уравнений

 

Матрица называется обратной к квадратной матрице , если

,

где - единичная матрица, имеющая тот же порядок, что и матрица . Обратная матрица существует только в том случае, если , и ее элементы находятся по формуле

,

где - алгебраическое дополнение к элементу .

Внимание! Алгебраические дополнения вычисляются к элементам строки, а записываются в столбец.

Если , то матрица называется вырожденной, в противном случае невырожденной, т.е. обратная матрица существует только для невырожденных матриц.

Обозначается обратная матрица , т.е.

,

при этом ее определитель .

Для невырожденных матриц и выполнены соотношения

,

.

Введение обратной матрицы позволяет решать матричные уравнения. В конечном счете, матричные уравнения сводятся к двум простейшим уравнениям:

или .

Если матрица - квадратная, невырожденная, то эти уравнения имеют единственное решение, которое можно получить с помощью обратной матрицы. Так как при умножении матриц коммутативный закон не выполняется, указанные уравнения имеют различные решения.

При поиске решения первое из уравнений надо умножать на обратную матрицу слева, а второе справа, т.е.

, (5)

. (6)

►Пример 5.Найти решение матричного уравнения , то есть определить матрицу , если ; .

Решение.

Решение в матричном виде определяется формулой (5), т.е. , если матрица невырожденная. Вычислим определитель матрицы :

.

Следовательно, матрица невырожденная, и для нее существует обратная матрица. Проведем вычисления, необходимые для построения обратной матрицы. Вычислим алгебраические дополнения:

Составим обратную матрицу и найдем неизвестную матрицу.

,. ◄

При вычислениях множитель лучше оставлять перед матрицей и проводить умножение полученной матрицы на него на последнем этапе вычислений.

►Пример 6. Найти решение матричного уравнения , если .

Решение.

Формулой (5) воспользоваться нельзя, так как матрица не квадратная, следовательно, для нее не существует обратной матрицы. Умножим обе части уравнения на транспонированную матрицу слева, получаем

.

Матрица − квадратная и, если ее определитель не равен нулю, то решение заданного уравнения имеет вид

. .

Проведем вычисления:

.

Определитель полученной матрицы . Следовательно, обратная матрица к матрице существует, и можно найти матрицу .

,

,

.

Итак, неизвестная матрица . ◄