Интегральная теорема Лапласа

Если n – велико, а р – отлично от 0 и 1, то

где

- функция Лапласа (функция табулирована).

Функции Гаусса и Лапласа обладают свойствами, которые необходимо знать при использовании таблиц значений этих функций:

а) ;

б) при больших верно .

Теоремы Лапласа дают удовлетворительное приближение при . Причем, чем ближе значения к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли).

Задача 7. Для мастера определенной квалификации вероятность изготовить деталь отличного качества равна 0,75. За смену он изготовил 400 деталей. Найти вероятность того, что в их числе 280 деталей отличного качества.

Решение. По условию , откуда

По таблицам найдем .

Искомая вероятность равна:

 

 

Задача 8. В продукции некоторого производства брак составляет 15%. Изделия отправляются потребителям (без проверки) в коробках по 100 штук. Найти вероятности событий:

В – наудачу взятая коробка содержит 13 бракованных изделий;

С – число бракованных изделий в коробке не превосходит 20.

Решение. Изготовление детали – это испытание, в котором может появиться событие А – изделие бракованное – с вероятностью . Находим . Можно применять формулы Лапласа:

Приблизительно 9,5% всех коробок содержат 13 бракованных изделий и в 92% коробок число бракованных не превосходит 20.

 

Задача 9. Небольшой город ежедневно посещают 100 туристов, которые днем идут обедать. Каждый из них выбирает для обеда один из двух городских ресторанов с равными вероятностями и независимо друг от друга. Владелец одного из ресторанов желает, чтобы c вероятностью приблизительно 0,99 все пришедшие в его ресторан туристы могли там одновременно пообедать. Сколько мест должно для этого быть в его ресторане?

Решение. Будем считать, что событие произошло, если турист пообедал у заинтересованного владельца. По условию задачи, , . Нас интересует такое наименьшее число посетителей , что вероятность одновременного прихода не менее чем туристов из числа с вероятностью успеха приблизительно равна вероятности переполнения ресторана, т.е. . Таким образом, нас интересует такое наименьшее число , что .

Применим интегральную теорему Муавра-Лапласа. В нашем случае: ­– неизвестно, , , .

 

Тогда

,

.

Используя таблицы для функции , находим, , и, значит, . Следовательно, в ресторане должно быть 62 места.