Пересечение прямой и поверхности.

(Повторение и продолжение).

 

Для контроля усвоения материала хочу предложить выполнить самостоятельно две простые задачи на пересечение прямых частного положения с поверхностями конуса и цилиндра.

       
 
   
 

 


Чтобы построить точки пересечения прямой с конической или цилиндрической поверхностью, следует заключить прямую в плоскость, проходящую через вершину поверхности (собственную или несобственную), найти линию пересечения плоскости и поверхности, а затем точки , в которых эти линии пересекаются с заданной прямой.

 

ПЕРЕСЕЧЕНИЕ КРИВОЙ ЛИНИИ С ПОВЕРХНОСТЬЮ.

Рассмотрим на примере пересечения кривой линии с поверхностью конуса.

На фронтальной проекции видно, что кривая L не может пересечь поверхность конуса с вершиной S левее точки А2 и правее В2.

Глядя на горизонтальную проекцию можно утверждать , что пересечение может находится в пределах ограниченных точками С 1 и D 1.

Определим как горизонтальные так и фронтальные проекции этих точек и рассмотрев их станем утверждать, что пересечение происходит между точками А и D. Если кто затрудняется прийти к такому выводу, то задавайте вопрос и я дополнительно поясню.

Далее воспользуемся дополнительным центральным проецированием.

Спроецируем коническую поверхность конуса S и кривую в пределах

АD на плоскость Т.

 

 

S 2

 

Т2

 

Проекцией поверхности будет окружность, а проекцией кривой кривая со штрихом. ,то линии пересекаются в точках К и М.

Найдем горизонтальные проекции точек К и М .Соединив их с вершиной S получим горизонтальные проекции точек пересечения кривой с поверхностью. Найдем на фронтальной проекции этой кривой. соответствующие проекции точек пересечения.

 

. .

.

.

.

.

.

Метрическая задача.

 

Задача очень простая. Мы сможем решить ее различными известными нам

методами. Я покажу вам решение самым первым методом - треугольника.

Вы же попробуйте получить решение заменой плоскости проекций и методом

вращения.

Построить основной чертеж сферы с центром в точке С, если точка А

принадлежит ее поверхности.

 

А 2 ·

 

.

 

. · С 2

 

 

· С1

 

 

· А1

 

 

Задача сводится к нахождению натуральной величины отрезка АС.

Если мы возьмем превышение по оси Z токи А2 над тоской С2 и отложим его под

прямым углом к проекции А1С1, то диагональ полученного прямоугольного

треугольника будет равна натуральной величине отрезка или радиусу сферы.