Методи та приклади їх використання

 

Розглянемо вантаж маси , який коливається на пружині жорсткості у в’язкому середовищі з коефіцієнтом в’язкості під дією періодичної сили амплітуди і частоти . Параметрами системи є: . Узагальнена координата – переміщення вантажу, яка є функцією параметрів та часу:

.

Перший спосіб отримання критеріїв подібності базується на формулі (3.2). У нашому випадку можна прийняти: , , , , , . Тоді розмірність кожної величини можна виразити наступним чином

.

Зведемо показники степенів для кожної величини в таблицю.

Таблиця.

Величина Показники степенів

 

Система лінійних алгебраїчних рівнянь (3.1) матиме вигляд

(3.4)

Ранг матриці системи (3.4) рівний трьом, кількість невідомих величин , тому система (3.4) має лінійно незалежних розв’язків. Це означає, що для знаходження цих розв’язків значення чотирьох величин вибираються довільно, а решта величин шукаються з системи (3.4).

Нехай , . Тоді з системи (3.4) будемо мати, що , , . На основі формули (3.2) отримаємо перший критерій подібності механічної коливальної системи:

.

Для отримання другого критерію подібності приймемо , . Тоді , , і критерій подібності буде мати вигляд .

Аналогічно, прийнявши, що і , отримаємо третій критерій подібності , і, нарешті, приймаючи і , будемо мати четвертий критерій подібності

.

Вищенаведений метод побудови критеріїв подібності називається методом визначальних рівнянь.

Для знаходження критеріїв подібності існує декілька інших методів. Найпростіший випадок - коли задано диференційне рівняння. Для прикладу, маємо двовимірне рівняння теплопровідності .

Використовуючи правило Фур’є, а саме: розмірніcть усіх членів рівняння однакова і відкидаючи знаки диференціювання розділимо всі члени рівняння на один з його членів, тобто , , .

В результаті, після скорочення, отримаємо: , , .

Інший шлях знаходження критеріїв подібності - застосування методу нульових розмірностей.

[x1]=кг; [x2]=м-1; [x3]=м; [x4]=м2кг/сек2; [x5]=ceк; [x6]=сек-1.

На першому етапі виберемо три будь-які параметри, для яких визначник D¹0. Такими параметрами можуть бути х1, х2, х4.

Кг м сек

.

В даному випадку кількість лінійно-незалежних критеріїв подібності рівна трьом (число величин (6) мінус ранг матриці (3)).

На наступному кроці, згідно достатньої умови подібності, перший критерій подібності визначається таким чином:

1)

звідки

звідки

звідки .

Перший критерій подібності запишеться у вигляді .

2),

звідки

звідки

звідки .

Тоді другий критерій подібності запишемо у наступній формі:

.

3),

звідки

звідки

звідки .

В кінцевому випадку вираз для третього критерію подібності має таку форму:

.

Іншим прикладом застосування теорії подібності для дослідження вихідних параметрів пристроїв в мікромасштабі.

Розглянемо переміщення рідини в трубі діаметром d, довжиною l, швидкістю v з густиною рідини ρ та коефіцієнтом в’язкості μ, і зниження тиску на цій довжині дорівнює ΔР.

Запишемо розмірності названих вище величин в системі СІ:

, , , , , .

На першому етапі застосування методу нульових розмірностей виберемо три будь-які параметри, для яких значення визначника D¹0. Такими параметрами можуть бути , , .

Кг м сек

.

У цьому випадку кількість лінійно-незалежних критеріїв подібності дорівнює трьом (кількість величин (6) мінус ранг матриці (3)).

На наступному кроці, згідно з достатньою умовою подібності, перший критерій подібності вимагає дотримання геометричної подібності, тобто: .

Другий критерій подібності визначається так:

.

Маємо три рівняння та три невідомі

, , .

Розв’яжемо отриману систему рівнянь і отримаємо, що:

, , .

Відповідно, другий критерій подібності буде таким .

Отриманий критерій подібності називають критерієм Рейнольдса.

Третій критерій подібності визначаємо:

.

Отже, , , .

Розв’язавши систему з трьох рівнянь з трьома невідомими, отримаємо:

, , .

Третій критерій подібності визначається за формулою та називається критерієм Ейлера.

Проаналізуємо детальніше число Рейнольдса, яке є мірою турбулентності потоку (напрклад, при Re < 2000 представляє ламінарну течію і при Re > 4000 представляє турбулентну течію) та є функцією масштабу рідинної системи.

Не дивно, що, хоча ми зазвичай спостерігаємо турбулентний і хаотичний потік рідини в більшості макроскопічних систем, для потоків рідин в мікроскопічних системах майже завжди характерні умови ламінарних течій (тобто, оскільки розміри рідинної системи зменшені в разів, то Re буде також зменшене в разів, тобто потік рідини стає набагато більш ламінарним в мікромасштабі порівняно з макросистемами). Фактично завдяки такій поведінці існує можливість досягнення повного змішування в мікрорідинних системах, що є дуже перспективним під час вирішення ряду технічних задач.

Наведемо приклад застосування методу на основі правила Фур’є до визначення вихідних теплових пристроїв в мікромасштабі. Отже, візьмемо одновимірне нестаціонарне диференціальне рівняння теплопровідності і розділимо його праву частину на ліву, при цьому опустивши знак диференціювання. Скоротивши позначення температури та підставивши замість параметр довжини , отримаємо безрозмірний комплекс, так зване число Фур’є , який характеризує перехідний процес при перенесенні тепла та визначається з допомогою формули , де – коефіцієнт теплопровідності; – коефіцієнт питомої теплоємності; – густина матеріалу; – параметр часу.

Треба додати, що число Фур’є характеризує проникнення та поширення тепла у випадку перехідного процесу при перенесенні тепла в матеріалі з коефіцієнтом теплопровідності , питомою теплоємністю та густиною .

Отже, якщо вважати, що теплові процеси в макро- і мікропристроях подібні та їх лінійні розміри не менші за один мкм, то, відповідно, мають бути однакові значення критеріїв подібності. У нашому випадку число Фур’є для макросистеми має бути таким, як і для мікросистеми. З вищенаведеного випливає, що із зменшенням параметра довжини у 100 разів перехідний процес перенесення тепла прискорюється в 10 000 разів для постійного числа Фур’є. Тобто швидкодія зростає у 10 000 разів. Отже, отримані результати дають змогу стверджувати, що теплові актюатори в мікросвіті є достатньо швидкодіючими пристроями порівняно з тепловими макропристроями.