Постановка задачи интерполяции.

Пусть известные значения некоторой функции f образуют следующую таблицу:

х x0 x1 xn
f(x) y0 y1 yn

При этом требуется получить значение функции f для такого значения аргумента х, которое входит в отрезок [x0;xn], но не совпадает ни с одним из значений xi (i=0,1,…,n).

Классический подход к решению задачи построения приближающей функции основывается на требовании строгого совпадения значений f(x) и F(x) в точках xi(i=0, 1, 2, …, n), т.е.

F(x0)=y0, F(x1)=y1, …, F(xn)=yn. (1)

В этом случае нахождение приближенной функции называют интерполяцией (или интерполированием), а точки x0, x1, …, xnузлами интерполяции. Геометрически это означает, что нужно найти кривую y=F(x) некоторого определенного типа, проходящую через заданную систему точек Mi(xi,yi) (i=0,1,2,…,n) (рис. 1). В случае, если xÏ[x0, xn] нахождение искомой функции называют экстраполяцией. В дальнейшем, под термином интерполяция будем понимать как первую, так и вторую операции.

 

Y

M0

 

y=f(x) y=F(x)

 

 

M1

y0 Mn

y1

yn

 


0 x0 x1 xn X

Рис. 1

Задача интерполирования может иметь в общей постановке бесчисленное множество решений или совсем их не иметь. Однако эта задача становится однозначной, если вместо произвольной функции F(x) искать некоторую функцию конкретного вида, удовлетворяющую условиям (1).

Наиболее удобной в практическом использовании функцией является алгебраический многочлен степени n :

Pn(x)=a0xn + a1xn-1 + … + an-1x + an

Чтобы задать многочлен n-ой степени достаточно задать его n+1 коэффициент. Значения многочлена просто вычисляются, его легко продифференцировать, проинтегрировать и т.д. Поэтому алгебраические многочлены нашли широкое применение для приближения функций.

Ниже будут подробно изложены широко используемые в исследованиях случаи интерполяции линейной функцией (линейная интерполяция) и квадратичной функцией (квадратичная интерполяция).

2.2. Линейная интерполяция.

Итак, пусть мы имеем функцию, заданную таблично. Решая задачу интерполяции, найдем в таблице два соседних значения аргумента (обозначим их хk и xk+1), между которыми лежит заданное значение х (хk <x<xk+1), пусть yk=f(xk) и yk+1=f(xk+1) – соответствующие им значения функции. Будем считать, что в промежутке (хk , xk+1) данную функцию с достаточной степенью точности можно заменить линейной функцией, т.е. дугу графика функции можно заменить стягивающей ее хордой (рис.2). Такая замена называется линейной интерполяцией.

  У y=f(x)     yk+1   y   yk   0 хk x xk+1 х

 

 

Уравнение прямой, проходящей, через точки (хk , yk) и (хk+1 , yk+1), имеет следующий вид:

 

или в более привычной форме уравнения с угловым коэффициентом:

 

Применение линейной интерполяции для приближенного вычисления значений функции обосновано в том случае, когда возникающая при этом погрешность невелика. Для нахождения погрешности обозначим разность между неизвестным нам точным значением функции f(x) и ее приближенным значением, определяемым формулой (1) через j(х):

 

Будем предполагать также, что вторая производная функции f(x) на рассматриваемом участке непрерывна и удовлетворяет неравенству,

где

Используя аппарат математического анализа можно доказать, что для любого х из интервала (xk, xk+1) оценка погрешности линейной интерполяции будет иметь следующий вид:

 

Заметим, что вторая производная функции f(x) имеет конкретный механический смысл. Если f(x) описывает закон движения материальной точки, то вторая производная этой функции задает ускорение этой точки в момент времени х. Факт существования ограничения на ускорение (ограниченность второй производной) с физической точки зрения означает, что процесс описываемый функцией f(x) протекает относительно равномерно и функция изменяется не очень быстро. Таковой, например, будет функция, задающая изменение суточной температуры воздуха от времени. На практике именно этим критерием «плавности» скорости изменения процесса можно вполне воспользоваться для ответа на вопрос об обоснованности применения линейной интерполяции.

Окончательно линейная интерполяция считается применимой, если вносимая ею дополнительная погрешность заметно меньше погрешности измерений натурных данных. Если обозначить через m номер последнего разряда приводимых в таблице значений функции, то погрешность измерений будет равна и условие применимости линейной интерполяции запишется в виде неравенства:

( 2 )

Шаг и точность таблицы обычно стараются согласовать так, чтобы условие ( 2 ) было выполнено.

Бывает, однако, что для выполнения этого условия требуется выбирать слишком малый шаг. В таком случае не считаются с этим условием, а для отыскания промежуточных значений функции пользуются более сложной квадратичной интерполяцией или другими приемами.

3. МЕТОДИЧЕСКОЕ И МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

3.1. Методические указания по выполнению лабораторной работы – по числу студентов, присутствующих на занятиях.

3.2. Раздаточный материал (индивидуальные исходные данные, персональный компьютер для выполнения вычислений с использованием EXCEL) — по числу студентов.