Пределы функций

При вычислении предела элементарной функции f(x) приходится сталкиваться с двумя существенно различными типами примеров.

 

1 Функция f(x) определена в предельной точке x=a. Тогда

 

. (6.3.1)

 

2 Функция f(x) в предельной точке х=а не определена или же вычисляется предел функции при . Тогда вычисление предела требует в каждом случае индивидуального подхода. В одних случаях (наиболее простых) вопрос сводится непосредственно к применению теорем о свойствах бесконечно больших и бесконечно малых функций и связи между ними. Более сложными случаями нахождения предела являются такие, когда функция f(x) в точке х=а или при представляет собой неопределенность

.

 

Приведем основные теоремы, на которых основано вычисление пределов.

1 Если существуют и , то

а) ;

б) ;

 

Частные случаи:

 

 

 

в) .

2 Если в некоторой окрестности точки х=а (кроме, быть может, точки а) выполнено условие f(x)=q(x) и если предел одной из этих функций в точке а существует, то

.

3 Если существует U(х) и f(х) – элементарная функция, то

.

Например : ,

.

 

4 Первый замечательный предел: . (6.3.2)

5 Второй замечательный предел: . (6.3.3)

Также при вычислении пределов следует знать ряд эквивалентных бесконечно малых функций:

при

Примеры 6.3.1.

Вычислите пределы:

1) .

 

Функция f(x) в предельной точке х=2 не определена; так как числитель и знаменатель дроби обращается в нуль, то имеем неопределенность вида 0/0.

Преобразуем дробь, и по формуле (1) получим

 

.

 

2) .

 

В этом случае также получается неопределенность вида 0/0. Преобразование функции сводится к уничтожению иррациональности в числителе: для этого умножим числитель и знаменатель на выражение и затем сократим дробь на . Отсюда

 

.

 

3) .

 

Здесь имеет место неопределенность вида . Разделим числитель и знаменатель на (наивысшую степень х в данной дроби). Тогда

 

.

 

4) .

Здесь получается неопределенность вида . Представим функцию в виде дроби, которая в точке х=0 дает неопределенность вида 0/0, после чего преобразуем её так, чтобы можно было воспользоваться первым замечательным пределом:

 

 

 

 

 

5)

Функция при x-> представляет собой степень, основание которой стремится к единице, а показатель – к бесконечности, неопределенность вида .

Преобразуем функцию таким образом, чтобы использовать второй замечательный предел:

= = = = = =

= = =

 

6) .

Используя второй замечательный предел, находим

= = =