Элементы комбинаторики

Согласно классическому определению подсчет вероятности собы­тия А сводится к подсчету числа благоприятствующих ему исходов. Делают это обычно комбинаторными методами.

Комбинаторика — раздел математики, в котором изучаются за­дачи выбора элементов из заданного множества и расположения их в группы по заданным правилам, в частности задачи о подсчете числа комбинаций (выборок), получаемых из элементов заданного конечно­го множества. В каждой из них требуется подсчитать число возмож­ных вариантов осуществления некоторого действия, ответить на вопрос «сколькими способами?».

Многие комбинаторные задачи могут быть решены с помощью сле­дующих двух важных правил, называемых соответственно правилами умножения и сложения.

Правило умножения (основной принцип): если из некоторого конечного множества первый объект (элемент х) можно выбрать п1 способами и после каждого такого выбора второй объект (элемент у) можно выбрать n2 способами, то оба объекта (х и у) в указанном поряке можно выбрать п1 • n2 способами.

Этот принцип, очевидно, распространяется на случай трех и больше объектов.

Пример 1.7. Сколько трехзначных чисел можно составить из цифр 2, 3, 4, 5, если: а) цифры не повторяются? б) цифры могут повторяться

Имеется 5 различных способов выбора цифры для первого места (слева в трехзначном числе). После того как первое место занято, например, цифрой 2, осталось четыре цифры для заполнения второго места. Для заполнения третьего места остается выбор из трех цифр. Следовательно, согласно правилу умножения имеется 5 • 4 • 3 = 60 способов расстановки цифр, т. е. искомое число трехзначных чисел есть 60. (Вот некоторые из этих чисел: 243, 541, 514, 132, ...) Понятно, если цифры могут повторяться, то трехзначных чисел 5 • 5 • 5 = (Вот некоторые из них: 255, 333, 414, 111, ...)

Правило суммы. Если некоторый объект х можно выбрать n1 способами, а объект у можно выбрать n2 способами, причем первые и вторые способы не пересекаются, то любой из указанных объектов (х или у), можно выбрать п1 + n2 способами.

Это правило распространяется на любое конечное число объектов.

Пример 1.8. В студенческой группе 14 девушек и 6 юношей. Сколь­кими способами можно выбрать, для выполнения различных заданий, двух студентов одного пола?

 

По правилу умножения двух девушек можно выбрать 14 • 13 = 182 способами, а двух юношей — 6 • 5 = 30 способами. Следует выбрать двух студентов одного пола: двух студенток или двух юношей. Соглас­но правилу сложения таких способов выбора будет 182+ 30 = 212. •

Решение вероятностных (и не только их) задач часто облегчается, если использовать комбинаторные формулы. Каждая из них опреде­ляет число всевозможных исходов в некотором опыте (эксперименте), состоящем в выборе наудачу т элементов из п различных элементов рассматриваемого множества.

Существуют две схемы выбора m элементов (0 < т £ п) из исходного множества: без возвращения (без повторений) и с возвращением (с повторением). В первом случае выбранные элементы не возвращаются обратно; можно отобрать сразу все т элементов или последовательно отбирать их по одному. Во второй схеме выбор осуществляется поэле­ментно с обязательным возвращением отобранного элемента на каждом шаге.