рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Некоторые сведения из механики

Некоторые сведения из механики - раздел Физика, Гироскоп Некоторые Сведения Из Механики. Удивительное На Первый Взгляд Свойство Гироск...

Некоторые сведения из механики. Удивительное на первый взгляд свойство гироскопа двигаться в направлении, перпендикулярном действующему на него усилию, полностью подчинено законам механики.

Оно объясняется инертностью массы гироскопа, присущей ему, как и любому другому телу. Наблюдения и опыты показывают, что изменение скорости и направления движения любого тела не может происходить само по себе без воздействия на него внешних сил. Согласно закону Ньютона любое тело, если на него не действуют другие тела, сохраняет состояние покоя или прямолинейного и равномерного движения. Рис.10. Различные виды движения тел Свободно движущееся тело А рис.10 стремится сохранить свое движение с постоянной скоростью v в прямолинейном направлении аb. На схеме скорость v изображена вектором в виде отрезка прямой nl, совпадающей с направлением движения ab. Стрелка на конце вектора указывает, в какую сторону по этому направлению движется тело. Длина nl вектора в условном масштабе изображает величину скорости v. Ньютон установил также, что ускорение w тела, характеризующее изменение скорости его движения, пропорционально действующей на тело силе F и обратно пропорционально массе этого тела т, равной весу тела G, деленному на ускорение свободного падения g. Этот вывод, имеющий всеобщий характер, носит название второго закона Ньютона и может быть выражен формулой из которой следует, что сила F, необходимая для сообщения телу ускорения до, равна массе т тела, умноженной на ускорение, F mw 1 Из уравнения 1 следует, что для изменения скорости и направления движения тела необходимое внешнее усилие должно быть тем больше, чем больше масса тела и чем больше ускорение последнему должно быть сообщено. Таким образом, именно масса тела обладает инертностью, или, иначе говоря, свойством сохранять свое состояние движения неизменным, которое может являться и состоянием покоя и состоянием равномерного и прямолинейного движения.

В описанном проявлении инертности массы и заключается сущность основного закона, которому движение гироскопа подчинено в такой же мере, как и движение любого другого тела. Если на тело А, движущееся по прямой ab со скоростью у0 рис.10 , подействовать в направлении его движения силой F, то по истечении весьма малого промежутка времени оно будет продолжать двигаться в прежнем направлении ab, но уже с новой скоростью vt. Изменение скорости движения тела за время At и характеризует его ускорение Измеряя скорость в сантиметрах в секунду см сек, ускорение будем оценивать в сантиметрах в секунду в квадрате см сек2 . В общем случае под воздействием внешней силы тело может изменить одновременно и скорость и направление своего движения. Представим себе, что на тело А, движущееся в направлении ab со скоростью v0, подействовала сила F2, направленная по линии cd, перпендикулярной ab. Под влиянием этого усилия тело получит ускорение в направлении cd, в результате чего по прошествии времени Дt оно, кроме скорости v0 в направлении ab, приобретет некоторую дополнительную скорость v2 в направлении cd. Нетрудно определить новое направление и вычислить новую скорость v движения рассматриваемого тела. Как известно, направление движения будет определяться направлением диагонали параллелограмма, стороны которого равны векторам v0 и и2, а значение суммарной скорости - длиной этой диагонали, вычисленной в соответствии с масштабом, принятым для построения векторов у0 и и2. Для получения ясного представления о сущности проявления основного закона движения при опытах с гироскопическими приборами необходимо выяснить возможные перемещения гироскопа в пространстве. Движение гироскопа можно рассматривать состоящим из его вращения вокруг трех осей подвеса рис.11 . В этом случае необходимо знать величину и направление скоростей его вращения вокруг каждой из этих осей в отдельности.

Скорость вращения тел измеряют обычно либо числом оборотов в минуту, либо числом, радианов 1 в секунду.

Скорость вращения в один радиан в секунду соответствует повороту рассматриваемого тела рис.14 на угол цR, равный центральному углу, опирающемуся на дугу ab, длина которой равна радиусу окружности R. Рис.11. Схема вращения тела вокруг оси Так, если рассматриваемое тело в течение 1 сек. совершит один оборот, т.е. повернется на 360 , то угловая скорость его вращения, выраженная в радианах в секунду, будет равна Если же тело в течение 1 мин. совершает р оборотов, то величина угловой скорости определится равенством Но одна величина угловой скорости еще не дает полного представление о характере вращательного движения. Необходимо знать положение оси в пространстве, вокруг которой происходит вращение и направление самого вращения.

Для записи этих характеристик наиболее удобно изображать угловые скорости с помощью векторов.

Обозначая угловую скорость Q вектором, мы должны совместить его с осью AA1 вращения тела и направить по оси АА1 в такую сторону, чтобы со стороны его конца вращение тела представлялось происходящим против часовой стрелки.

Что касается величины угловой скорости Q, то она характеризуется длиной вектора, которая определяет в некотором масштабе ее численное значение.

Важно обратить внимание на тот факт, что ускорение, вызванное воздействием сил, оценивает изменение скорости не только по величине, но и по направлению.

Для пояснения сказанного обратимся к рис.12, на котором материальная частица в виде шарика D соединена с помощью нерастяжимой нити OD длиной R с валом В электродвигателя ЭД, корпус которого неподвижно закреплен на фундаменте.

Рис.12. Схема для определения центростремительного ускорения Как только вал двигателя начнет вращаться вокруг оси ААХ, шарик D также начнет перемещаться вокруг этой оси. Если вал двигателя вращается с постоянной угловой скоростью 2, то и шарик D будет двигаться с такой же по величине скоростью.

Окружная скорость v ЩR шарика D в этом случае постоянна, но все же его движение не остается равномерным и прямолинейным, так как изменяется направление его движения.

Действительно, если бы шарик D двигался равномерно с постоянной по величине скоростью v и прямолинейно, то, начиная, например, с момента совмещения центра шарика с точкой а, произошло бы его перемещение вдоль прямой ab. Но шарик движется по дуге окружности радиуса R. Поэтому в точке С направление скорости vc его движения будет уже отличным от направления скорости v, хотя численные их значения останутся равными.

Так как v и vc являются скоростями одного и того же непрерывно движущегося тела D, то очевидно, что скорость vc образовалась из первоначальной скорости v, получившей вследствие тех или иных причин некоторое изменение на величину v. Скорости v и и дают в геометрической сумме ту результирующую скорость vc, которой тело D будет обладать в точке С. Учитывая, что треугольник Cfe благодаря равенству скоростей v и vc является равнобедренным и подобным треугольнику ОаС, у которого стороны Оа и ОС равны между собой и одновременно равны радиусу R, можно составить отношение между сторонами этих двух треугольников Отрезки Сf и fe в выбранном масштабе выражают численные значения скоростей v и v. Величина Оа равна радиусу R окружности, по которой происходит перемещение тела D. Кроме того, при малом значении угла Щt поворота тела D вокруг оси ААХ длина дуги аС RЩt будет практически равна длине хорды аС Учитывая сказанное, перепишем последнее отношение в следующем виде Таково значение той дополнительной скорости, которая была сообщена движущемуся шарику при повороте двигателя на угол Щt. Эта дополнительная скорость v и повлекла за собой изменение первоначальной скорости v. Относя величину v изменения скорости движения ко времени t в течение которого это изменение произошло, мы найдем величину ускорения тела при его движении.

Если угол поворота Щt уменьшить до очень малого значения, близкого к нулю т.е. рассматривать поворот тела за весьма малый промежуток времени kt, то нетрудно убедиться в том, что дополнительная скорость v направлена вдоль радиуса R, иными словами к центру, поэтому рассматриваемое ускорение и получило название центростремительного.

Обозначая центростремительное ускорение wц, находим его значение Выше уже говорилось о том, что для сообщения телу ускорения на него необходимо воздействовать внешним усилием.

В рассматриваемом случае рис.15 это усилие совпадает по направлению с радиусом R и действует на тело D со стороны нерастяжимой нити 0D. В свою очередь тело D будет действовать на нить силой, равной по величине внешнему усилию, но обратной ему по направлению.

Такие силы, развиваемые массой движущегося тела и оказывающие сопротивление внешним усилиям, называются силами инерции.

Если прекратить связь между валом двигателя и телом, то с этого мгновения последнее перестанет двигаться по окружности и начнет перемещаться прямолинейно с постоянной скоростью. Сказанное легко проверить на опыте. Используйте в качестве связи между валом В электрического двигателя ЭД и шариком D обычную суровую нитку. Приведите во вращение вал двигателя, а вместе с ним и шарик и дайте им набрать достаточно большую скорость, Приготовьте острую бритву и в тот момент, когда центр шарика D будет подходить к совмещению с точкой а, быстро перережьте нить. Шарик D сразу же прекратит движение по окружности и начнет перемещаться вдоль прямой ab, с которой в момент перерезывания нити был совмещен вектор v его скорости. 7.

– Конец работы –

Эта тема принадлежит разделу:

Гироскоп

Рис.2 Различные формы волчков Попытки повалить быстро вращающийся волчок на бок не удавались. Под действием толчка с силой волчок лишь отскакивал в… В самом деле, если быстро вращающийся волчок, выполненный в виде диска,… Изучением законов движения волчка занялись многие ученые мира. Над этой задачей работал и знаменитый английский ученый…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Некоторые сведения из механики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Секстан Флерие
Секстан Флерие. В 1886 г. французский адмирал Флерие предложил новый прибор - секстан - для измерения географической широты местоположения корабля во время шторма, основой которого являлся быстро в

Почему волчок не падает
Почему волчок не падает. Небольшая вершина, которую мы покорили, прочитав и усвоив предыдущую главу, позволяет нам ответить на вопрос, вынесенный в заголовок. Представим себе какой-либо волчок, нап

Рождение гироскопа
Рождение гироскопа. Получив медицинское образование, Жан Бернар Леон Фуко 1819 - 4868 увлекся экспериментальной физикой и достиг в этой области немалых успехов. Назовем лишь самые крупные -

Гироскоп и его основные свойства
Гироскоп и его основные свойства. Обнаруженное свойство волчка открывало интереснейшие перспективы его использования. Представим себе, что мы наблюдаем за земным шаром со стороны его Северно

Роль гироскопических приборов в самолетовождении
Роль гироскопических приборов в самолетовождении. При полете самолета необходимо иметь точные данные о географических координатах тех пунктов земной поверхности, над которыми он в данный момент вре

Авиационный гиромагнитный компас
Авиационный гиромагнитный компас. Чтобы разобраться в принципе действия гиромагнитного компаса, представим себе гироскоп, на продолжении наружной оси СС1 подвеса которого рис.26 расположена независ

Авиационный гироскопический горизонт
Авиационный гироскопический горизонт. Так как самолет в воздухе может занимать любое положение по отношению к плоскостям горизонта и меридиана, то для выдерживания полета по заранее намеченному нап

Автоматический штурман
Автоматический штурман. В связи с непрерывным ростом скорости и дальности беспосадочных полетов усложнилась работа по определению местоположения летящего самолета, который на протяжении большого уч

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги