рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Почему волчок не падает

Почему волчок не падает - раздел Физика, Гироскоп Почему Волчок Не Падает. Небольшая Вершина, Которую Мы Покорили, Прочитав И У...

Почему волчок не падает. Небольшая вершина, которую мы покорили, прочитав и усвоив предыдущую главу, позволяет нам ответить на вопрос, вынесенный в заголовок. Представим себе какой-либо волчок, например то, что описан в начале книги тонкий латунный диск шестеренка, насаженный на тонкую стальную ось Этот вариант волчка изображен на рис.4. Пусть вас не пугает сложность рисунка, она кажущаяся. Ведь сложное - всего лишь недостаточно понятое.

Некоторые усилия и внимание - и все станет простым и ясным. Рис.4. Схема, поясняющая возникновение прецессии, гироскопического момента и характера движении полчка Возьмем прямоугольную систему координат хуz и поместим ее центр в центр масс полчка, то есть в точку ЦМ. Пусть ось z проходит через ось собственного быстрого вращения волчка, тогда оси хуz будут параллельны плоскости диска и лежать внутри него. Договоримся, что оси хуz участвуют во всех движениях волчка, кроме его собственного быстрого вращения.

В правом верхнем углу рис.4, б изобразим такую же систему координат хуz. Она нам понадобится в дальнейшем для разговора на языке векторов. Сначала не будем раскручивать волчок, и попытаемся его поставить нижним концом оси на опорную плоскость, например на поверхность стола.

Результат не обманет наших ожиданий волчок обязательно упадет на бок. Почему это происходит? Центр масс волчка точка ЦМ лежит выше точки его опоры точки О . Сила веса G волчка, как мы уже знаем, приложена в точке ЦМ. Поэтому любое малое отклонение оси z волчка от вертикали В обусловит появление плеча силы G относительно точки опоры О, то есть появление момента М, который и повалит волчок в направлении своего действия, то есть вокруг оси х. Теперь раскрутим волчок вокруг оси z до большой угловой скорости Щ. Пусть по-прежнему ось z волчка отклонена от вертикали В на малый угол, т.е. на волчок действует тот же момент М. Что же изменилось теперь? Как мы увидим дальше, изменилось многое, а вот в основе этих изменений лежит тот факт, что теперь каждая материальная точка i диска уже имеет линейную скорость V, обусловленную вращением диска с угловой скоростью Щ. Выделим одну точку в диске, например точку А, имеющую массу mA и лежащую в средней плоскости диска на расстоянии г от оси вращения г - радиус диска. Рассмотрим особенности ее движения за один оборот.

Итак, в начальный момент времени точка А, как и все другие точки диска, имеет линейную скорость, вектор которой VА лежит в плоскости диска.

На волчок и его диск действует момент М, который пытается опрокинуть волчок, придав точкам диска линейные скорости, векторы которых Wi перпендикулярны плоскости диска. Под действием момента М точка A начинает приобретать скорость WA. В силу закона инерции скорость материальной точки мгновенно нарасти никак не может.

Поэтому в начальном положении точка А находится на оси у ее скорость WA 0, и только через четверть оборота диска когда точка А, вращаясь, будет уже находиться на оси х ее скорость WA возрастает и станет максимальной. Это значит, что под действием момента М вращающийся волчок поворачивается вокруг оси у, а не вокруг оси х как это было с нераскрученным волчком. В этом явлении начало разгадки тайны волчка.

Поворот волчка под действием момента М называется прецессией, а угловая скорость поворота - скоростью прецессии, обозначим ее ы п. Прецессируя, волчок начал поворот вокруг оси у. Это движение является переносным по отношению к собственному относительному вращению волчка с большой угловой скоростью Щ. В результате переносного движении вектор относительной линейной скорости VA материальной точки A, уже возвратившейся и начальное положение, окажется повернутым в сторону переносного вращении.

Таким образом, возникает уже знакомая нам картина влияния переносного движения на относительное, влияния, рождающего Кориолисово ускорение. Направление вектора Кориолисова ускорения точки А в соответствии с правилом, приведенным в предыдущей главе, найдем, повернув вектор относительной скорости VА точки А на 90 в сторону переносного прецессионного вращения волчка. Кориолисово ускорение ак точки A, имеющей массу тА, порождает силу инерции FK, которая направлена противоположно вектору ускорения aк и приложена к материальным точкам диска, соприкасающимся с точкой A. Рассуждая подобным образом, можно получить направления векторов Кориолисова ускорения и силы инерции для любой другой материальной точки диска. Вернемся к точке А. Сила инерции FK на плече r создает момент МГА, действующий на волчок вокруг оси х. Этот момент, порожденный Кориолисовой силой инерции, называется гироскопическим.

Его величину определяют помощью формулы МГА rFk mAr2 ЩщП IA Щ щП Величину IA mAr2, зависящую от массы точки и ее расстояния от оси вращения, называют осевым моментом инерции точки.

Момент инерции точки является мерой ее инертности во вращательном движении. Понятие момента инерции было введено в механику Л. Эйлером. Моментами инерции обладают не только отдельные точки, но и целые тела, поскольку они состоят из отдельных материальных точек. Имея это в виду, составим формулу для гироскопического момента МГ, создаваемого диском волчка.

Для этого в предыдущей формуле заменим момент инерции точки IA на момент инерции диска IД, а угловые скорости Щ и щП оставим прежними, так как все точки диска за исключением тех, что лежат соответственно на осях гну вращаются с одинаковыми угловыми скоростями Щ и щП. Н.Е. Жуковский отец русской авиации, занимавшийся также и лучением механики волчков и гироскопов, сформулировал следующее простое правило для определения направления гироскопического момента рис.4, б гироскопический момент стремится совместить вектор кинетического момента Н с вектором угловой скорости переносного вращения щП по кратчайшему пути. В частном случае скоростью переносного вращения является скорость прецессии.

На практике пользуются также аналогичным правилом для определения направления прецессии прецессия стремится совместить вектор кинетического момента Н с вектором момента физических сил М по кратчайшему пути. Эти простые правила лежат в основе гироскопических явлений, и мы ими будем широко пользоваться в дальнейшем.

Но вернемся к волчку. Почему он не падает, поворачиваясь вокруг оси х, ясно - препятствует гироскопический момент. Но может быть, он упадет, поворачиваясь вокруг оси у в результате прецессии? Тоже нет! Дело в том, что, прецессируя, волчок начинает поворачиваться вокруг оси у, а это значит, что сила веса G начинает создавать момент, действующий на волчок вокруг этой же оси. Такая картина нам уже знакома, с нее мы начинали рассмотрение поведения вращающегося волчка. Стало быть, и в этом случае возникнут процессия и гироскопический момент, которые не позволят волчку долго наклоняться вокруг оси у, а переведут движение волчка в другую плоскость, и которой нее явлении повторятся снова.

Таким образом, пока угловая скорость собственного вращения волчка Щ велика, момент силы тяжести вызывает прецессию и гироскопический момент, которые удерживают волчок от падении в каком либо одном направлении. Этим объясняется устойчивость оси r вращения волчка. Допуская некоторые упрощения, можно считать, что конец оси волчка, точка К движется по окружности а сама ось вращения z описывает в пространстве конические поверхности с вершинами в точке О. Вращающийся волчок представляет собой пример движения тела, имеющего одну неподвижную точку у волчка это точка О . Задача о характере движения такого тела сыграла важную роль в развитии науки и техники, ее решению посвятили свои труды многие выдающиеся ученые. 4.

– Конец работы –

Эта тема принадлежит разделу:

Гироскоп

Рис.2 Различные формы волчков Попытки повалить быстро вращающийся волчок на бок не удавались. Под действием толчка с силой волчок лишь отскакивал в… В самом деле, если быстро вращающийся волчок, выполненный в виде диска,… Изучением законов движения волчка занялись многие ученые мира. Над этой задачей работал и знаменитый английский ученый…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Почему волчок не падает

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Секстан Флерие
Секстан Флерие. В 1886 г. французский адмирал Флерие предложил новый прибор - секстан - для измерения географической широты местоположения корабля во время шторма, основой которого являлся быстро в

Рождение гироскопа
Рождение гироскопа. Получив медицинское образование, Жан Бернар Леон Фуко 1819 - 4868 увлекся экспериментальной физикой и достиг в этой области немалых успехов. Назовем лишь самые крупные -

Гироскоп и его основные свойства
Гироскоп и его основные свойства. Обнаруженное свойство волчка открывало интереснейшие перспективы его использования. Представим себе, что мы наблюдаем за земным шаром со стороны его Северно

Некоторые сведения из механики
Некоторые сведения из механики. Удивительное на первый взгляд свойство гироскопа двигаться в направлении, перпендикулярном действующему на него усилию, полностью подчинено законам механики.

Роль гироскопических приборов в самолетовождении
Роль гироскопических приборов в самолетовождении. При полете самолета необходимо иметь точные данные о географических координатах тех пунктов земной поверхности, над которыми он в данный момент вре

Авиационный гиромагнитный компас
Авиационный гиромагнитный компас. Чтобы разобраться в принципе действия гиромагнитного компаса, представим себе гироскоп, на продолжении наружной оси СС1 подвеса которого рис.26 расположена независ

Авиационный гироскопический горизонт
Авиационный гироскопический горизонт. Так как самолет в воздухе может занимать любое положение по отношению к плоскостям горизонта и меридиана, то для выдерживания полета по заранее намеченному нап

Автоматический штурман
Автоматический штурман. В связи с непрерывным ростом скорости и дальности беспосадочных полетов усложнилась работа по определению местоположения летящего самолета, который на протяжении большого уч

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги