Дифракция и интерференция волн

Дифракция и интерференция волн. Типичными волновыми эффектами являются явления интерференции и дифракции. Первоначально дифракцией называлось отклонение распространения света от прямолинейного направления. Это открытие было сделано в 1665 году аббатом Франческо Гримальди и послужило основой для разработки волновой теории света.

Дифракцией света представляла собой огибание светом контуров непрозрачных предметов и, как следствие этого, проникновение света в область геометрической тени. После создания волновой теории выяснилось, что дифракция света является следствием явления интерференции волн, испущенных когерентными источниками, находящимися в различных точках пространства. Волны называются когерентными, если разность их фаз остается постоянной с течением времени. Источниками когерентных волн являются когерентные колебания источников волн. Синусоидальные волны, частоты которых не изменяются с течением времени, являются всегда когерентными. Когерентные волны, испущенные источниками, находящимися в различных точках, распространяются в пространстве без взаимодействия и образуют суммарное волновое поле. Строго говоря, сами волны не складываются. Но если в какой-либо точке пространства находится регистрирующий прибор, то его чувствительный элемент будет приведен в колебательное движение под действием волн. Каждая волна действует независимо от других, и движение чувствительного элемента представляет собой сумму колебаний.

Иначе говоря, в этом процессе складываются не волны, а колебания, вызванные когерентными волнами.

Рис. 3.1. Система двух источников и детектора. L - расстояние от первого источника до детектора, L - расстояние от второго источника до детектора, d - расстояние между источниками. В качестве базового примера рассмотрим интерференцию волн, испускаемых двумя точечными когерентными источниками см. рис.3.1 . Частоты и начальные фазы колебаний источников совпадают.

Источники находятся на определенном расстоянии d друг от друга. Детектор, регистрирующий интенсивность образованного волнового поля, располагается на расстоянии L от первого источника. Вид интерференционной картины зависит от геометрических параметров источников когерентных волн, от размерности пространства, в котором распространяются волны и т.д. Рассмотрим функции волн, которые являются следствием колебаний, испускаемых двумя точечными когерентными источниками.

Для этого пустим ось z так, как показано на рис.3.1. Тогда волновые функции будут выглядеть так 3.1 Введём понятие разности хода волн. Для этого рассмотрим расстояния от источников до регистрирующего детектора L и L. Расстояние между первым источником и детектором L отличается от расстояния между вторым источником и детектором L на величину t. Для того чтобы найти t рассмотрим прямоугольный треугольник, содержащий величины t и d. Тогда можно легко найти t, воспользовавшись функцией синуса 3.2 Эта величина и будет называться разностью хода волн. А теперь помножим эту величину на волновое число k и получим величину, называемую разность фаз. Обозначим её, как 3.3 Когда две волны дойдут до детектора функции 3.1 примут вид 3.4 Для того чтобы упростить закон, по которому будет колебаться детектор, занулим величину -kL 1 в функции x1 t. Величину L в функции x2 t распишем её по функции 3.4 . Путем несложных преобразований получаем, что 3.5 где 3.6 Можно заметить, что соотношения 3.3 и 3.6 одинаковы. Ранее эта величина была определена, как разность фаз. Исходя из ранее сказанного, Соотношение 3.6 можно переписать следующим образом 3.7 Теперь сложим функции 3.5 . 3.8 Воспользовавшись методом комплексных амплитуд, мы получим соотношение для амплитуды суммарного колебания 3.9 где ?0 определяется соотношением 3.3 . После того, как была найдена амплитуда суммарного колебания, можно найти интенсивность суммарного колебания, как квадрат амплитуды 3.10 Рассмотрим график интенсивности суммарного колебания при разных параметрах.

Угол ? изменяется в интервале 0 это видно из рисунка 3.1 , длина волны изменяется от 1 до 5. Рассмотрим частный случай, когда L d. Обычно такой случай встречается в экспериментах по рассеянию рентгеновских лучей.

В этих экспериментах обычно детектор рассеянного излучения располагается на расстоянии много большим, чем размеры исследуемого образца.

В этих случаях в детектор попадают вторичные волны, которые с достаточной точностью можно приближенно полагать плоскими.

При этом волновые векторы отдельных волн вторичных волн, испущенных разными центрами рассеянного излучения, параллельны. Считается, что при этом выполняются условия дифракции Фраунгофера. 2.3.2. Дифракция рентгеновских лучейДифракция рентгеновских лучей - процесс, возникающий при упругом рассеянии рентгеновского излучения и состоящий в появлении отклоненных дифрагированных лучей, распространяющихся под определенными углами к первичному пучку.

Дифракция рентгеновских лучей обусловлена пространственной когерентностью вторичных волн, которые возникают при рассеянии первичного излучения на электронах, входящих в состав атомов. В некоторых направлениях, определяемых соотношением между длиной волны излучения и межатомными расстояниями в веществе, вторичные волны складываются, находясь в одинаковой фазе, в результате чего создается интенсивный дифракционный луч. Другими словами, под действием электромагнитного поля падающей волны заряженные частицы, имеющиеся в каждом атоме, становятся источниками вторичных рассеянных сферических волн. Отдельные вторичные волны интерферируют между собой, образуя как усиленные, так и ослабленные пучки излучения, распространяющиеся в разных направлениях.

Можно считать, что рассеяние не сопровождается дисперсией, и, следовательно, частота рассеянных волн совпадает с частотой первичной волны.

Если рассеяние является упругим, то не изменяется также и модуль волнового вектора. Рассмотрим результат интерференции вторичных волн в точке, удаленной от всех рассеивающих центров на расстояние много большее, чем межатомные расстояния в исследуемом облучаемом образце. Пусть в этой точке находится детектор и складываются колебания, вызванные пришедшими в эту точку рассеянными волнами. Так как расстояние от рассеивателя до детектора значительно превышает длину волны рассеянного излучения, то участки вторичных волн, приходящих в детектор, можно с достаточной степенью точности считать плоскими, а их волновые векторы - параллельными.

Таким образом, физическую картину рассеяния рентгеновских лучей по аналогии с оптикой можно назвать дифракцией Фраунгофера. В зависимости от угла рассеяния угла между волновым вектором первичной волны и вектором, соединяющим кристалл и детектор, амплитуда суммарного колебания будет достигать минимума или максимума. Интенсивность излучения, регистрируемая детектором, пропорциональна квадрату суммарной амплитуды.

Следовательно, интенсивность зависит от направления распространения рассеянных волн, достигающих детектора, от амплитуды и длины волны первичного излучения, от числа и координат рассеивающих центров. Кроме того, амплитуда вторичной волны, образованной отдельным атомом, а значит и суммарная интенсивность определяется атомным фактором - убывающей функцией угла рассеяния, зависящей от электронной плотности атомов. 2.3.3.