Радиационное затухание

Заряд, закрепленный на пружине с собственной частотой w0 (или электрон в атоме), даже в абсолютно пустом простран­стве не сможет колебаться бесконечно долго, поскольку, колеб­лясь, он теряет энергию на излучение. Никаких сил сопротив­ления в обычном смысле этого слова, никакой вязкости здесь нет. Но колебания не будут происходить «вечно», вследствие излучения они будут медленно замирать. А насколько медленно? Определим для осциллятора величину Q, вызванную так назы­ваемым радиационным сопротивлением или радиационным зату­ханием. Для любой колеблющейся системы величина Q равна энергии системы в данный момент времени, деленной на потери энергии, отнесенные к 1 рад:

 


 

 

Если Q задано, то легко получить закон спадания энергии колебаний: dW/dt = (-w/Q)W, откуда следует W =W0e-wt/Q; здесь W0 — начальная энергия (при t = 0).

Чтобы найти Q для излучающего осциллятора, вернемся к формуле (32.8) и подставим вместо dW/dt выражение (32.6).


А что нужно взять в качестве энергии W осциллятора? Кине­тическая энергия осциллятора равна 1/2mv2, а средняя кинети­ческая энергия равна mш2x20/4. Но мы помним, что полная энер­гия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равна

 

 

(32.9)

 


Какую частоту следует подставить в наши формулы? Мы возь­мем собственную частоту w0, потому что практически это и есть частота излучения атома, а вместо m подставим me . После ряда сокращений эта формула приводится к виду

 

(32.10)

(Для большей ясности и из соображений близости к исторически принятой форме мы ввели величину е2 = q2e/4pe0 и записали 2p/l вместо w0/с.) Поскольку величина Q безразмерна, множи­тель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размер­ность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротив­ление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось вы­бирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой
радиус. Численное значение классического радиуса электрона следующее:

 

 

(32.11)


Вычислим теперь значение Q для атома, излучающего ви­димый свет, например для атома натрия. Длина волны излу­чения натрия равна примерно 6000 Å и находится в желтой части спектра; эта величина довольно типична. Отсюда

 

(32.12)

 

 

т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1раз. Частота колебаний света v = с/l при длине волны 6000 Å составляет 1015 гц, а, следовательно, время жизни, т. е. время, за которое энер­гия уменьшится в Не раз, есть величина порядка 10-8сек.

Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электро­нами, и тогда возникает добавочное сопротивление и затухание будет другим.

Величина эффективного сопротивления у, определяющая сопротивление осциллятора, может быть найдена из соотноше­ния 1/Q=g/wo; вспомним, что именно y определяет ширину резо­нансной кривой (см. фиг. 23.2) . Итак, мы вычислили шири­ны спектральных линий для свободно излучающих атомов! Из равенства l=2pc/w получаем