Тепловое равновесие излучения

Мы приступаем к обсуждению более сложной и интересной теоремы, суть которой состоит в следующем. Предположим, что у нас имеется заряженный осциллятор, вроде того, о котором мы говорили, когда речь шла о свете. Пусть это будет электрон, колеблющийся в атоме вверх и вниз. А раз он колеблется, то излучает свет. Предположим теперь, что этот осциллятор попал в сильно разреженный газ, состоящий из других атомов, и время от времени эти атомы с ним сталкиваются. Когда в конце концов наступит равновесие, осциллятор приобретает такую энергию, что кинетическая энергия колебаний будет равна l/2kT, а поскольку это гармонический осциллятор, то полная энергия движения станет равной kT.

Это, конечно, неверно, потому что осциллятор несет электри­ческий заряд, а поскольку он обладает энергией kТ, то, качаясь вверх и вниз, он излучает свет. Поэтому невозможно получить равновесие только самого вещества без того, чтобы заряды не излучали свет, а когда свет излучается, утекает энергия, ос­циллятор со временем растрачивает энергию kT, а окружающий газ, сталкивающийся с осциллятором, постепенно остывает. Именно таким образом остывает за ночь натопленная с вечера печка, выпуская все тепло на воздух. Прыгающие в ее кирпи­чах атомы заряжены и непрерывно излучают, а в результате этого излучения танец атомов постепенно замедляется.

Но если заключить все атомы и осцилляторы в ящик, так чтобы свет не смог уйти в бесконечность, тепловое равновесие может наступить. Мы можем поместить газ в ящик, в стен­ках которого есть и другие излучатели, испускающие свет внутрь ящика, а еще лучше соорудить ящик с зеркальными стен­ками. Этот пример поможет лучше понять, что произойдет. Итак, мы предполагаем, что все излучение от осциллятора ос­тается внутри ящика. Осциллятор и в этом случае начинает излучать, но довольно скоро он все же соберет свое значение kT кинетической энергии. Происходит это потому, что сам ос­циллятор будет освещаться, так сказать, собственным светом, отраженным от стенок ящика. Вскоре в ящике будет много света и, хотя осциллятор продолжает излучать, часть света будет возвращаться и возмещать осциллятору потерянную им энергию.

А теперь подсчитаем, насколько должен быть освещен ящик при температуре Т, чтобы рассеяние света на осцилляторе обес­печивало его как раз такой энергией, какая нужна для под­держания излучения. Пусть атомов в ящике совсем немного и находятся они далеко друг от друга, так что наш осциллятор идеальный, не имеющий иного трения, кроме радиационного. Теперь заметим, что при тепловом равновесии осциллятор делает сразу два дела. Во-первых, он излучает, и мы можем подсчитать энергию излучения. Во-вторых, он в возмещение получает точно такое же количество энергии в результате рассеяния на нем света. Поскольку энергия ниоткуда больше притечь не может, то эффективное излучение — это как раз та часть «общего света», которая рассеялась на осцилляторе.


Таким образом, прежде всего мы вычисляем энергию, из­лучаемую в 1 сек осциллятором с заданной энергией. (Мы по­заимствуем для этого в гл. 32, посвященной радиационному трению, несколько равенств и не будем здесь приводить их выводы.) Отношение энергии, излученной за радиан, к энер­гии осциллятора называется 1/Q [см. уравнение (32.8)] : 1/Q= (dW/dt)/( w0W. Используя величину у (постоянную затуха­ния), можно записать это в виде 1/Q=g/w0, где w0— собствен­ная частота осциллятора, если g очень мала, a Q очень велико. Излученная за 1 сек энергия равна

 

Излученная за 1 сек энергия просто равна произведению g на энергию осциллятора. Средняя энергия нашего осциллятора равна kT, поэтому произведение g на kT — это среднее значе­ние излученной за 1 сек энергии:

<dW/dt>=gkT. (41.5)


Теперь нам нужно только узнать, что такое g. Эту величину легко найти из уравнения (32.12):

 

 

где r0= e2/mc2классический радиус электрона, и мы положи­ли Я = 2pс/w0.


Окончательный результат для средней скорости излучения света вблизи частоты w0 таков:

 

Теперь надо выяснить, сильно ли должен быть освещен ос­циллятор. Освещение должно быть таким, чтобы поглощен­ная осциллятором энергия (и впоследствии рассеянная) была в точности равна предыдущей величине. Иначе говоря, излучен­ный свет — это свет, рассеянный при освещении осциллятором в полости. Итак, нам остается рассчитать, сколько света рас­сеивается осциллятором, если на него падает какая-то — неиз­вестная — доза излучения. Пусть I(w)dw— энергия света час­тоты w в интервале частот dw (ведь у нас нет света точно задан­ной частоты; излучение распределено по спектру). Таким образом, I(w) — это спектральное распределение, которое нам надо найти. Это тот цвет огня, который мы увидим внутри печи при температуре Т, если откроем дверцу и заглянем внутрь.

Сколько же все-таки света поглотится? Мы уже определяли количество излучения, поглощаемого из заданного падающего пучка света, и выразили его через эффективное сечение. Это соответствует тому, как если бы мы предполагали, что весь свет, падающий на площадку определенной площади, погло­щается. Таким образом, полная переизлученная (рассеянная) интенсивность равна произведению интенсивности падающего света I(w)dw на эффективное сечение а.

Мы вывели формулу для эффективного сечения [см. уравне­ние (31.19)1, не включающую затухания. Нетрудно повторить этот вывод снова и учесть трение, которым мы тогда пренебре­гли. Если это сделать, то, вычисляя эффективное сечение по прежнему образцу, мы получим


 

 


Пойдем дальше; ss как функция частоты имеет более или менее заметную величину только для w около собственной час­тоты w0. (Вспомним, что для излучающего осциллятора Q — порядка 108.) Когда со равна w0, осциллятор рассеивает очень сильно, а при других значениях w он почти не рассеивает сов­сем. Поэтому можно заменить w на w0, а w2-w20 на 2w0(w-w0); тогда

 

 


Теперь почти вся кривая загнана в область около w=w0. (Фактически мы не должны делать никаких приближений, но легче иметь дело с интегралом, в котором подынтегральное вы­ражение несколько проще.) Если умножить интенсивность в данном интервале частот на эффективное сечение рассеяния, то получится энергия, рассеянная в интервале dw. Полная рассеянная энергия — это интеграл по всем w. Таким образом,

 

 

Теперь мы положим dWs/dt=3gkT. Но почему здесь стоит 3? Потому что в гл. 32 мы предполагали, что свет поляризован так, что может раскачивать осциллятор. Если бы мы исполь­зовали осциллятор, способный раскачиваться только в одном направлении, а свет был бы, скажем, поляризован неверно, то он не рассеивался бы совсем. Поэтому мы должны либо усреднить эффективное сечение рассеяния на осцилляторе, способном раскачиваться только в одном направлении, по всем направле­ниям падающих пучков и поляризации света в пучке, либо, что легче сделать, представить себе, что наш осциллятор пос­лушно следует за полем, каким бы оно ни было там, где он на­ходится. Такой осциллятор, который одинаково легко раска­чивается в любом из трех направлений, имеет среднюю энергию 3kT, потому что у него 3 степени свободы. А раз 3 степени сво­боды, то надо писать 3gkT.

Займемся теперь интегралом. Предположим, что неизвест­ное спектральное распределение света I(w) — это плавная кри­вая, которая в той узкой области частот, где ss имеет острый максимум, меняется не слишком сильно (фиг. 41.3).


Фиг. 41.3. Сомножители подын­тегрального выражения (41.10).

Пик — это резонансная кривая 1/[(w-w0)2+(g2/4)]. Множитель I(w) можно с хорошим приближением за­менить на I(w0).

 


Тогда сколь­ко-нибудь существенный вклад в интеграл дают только частоты, близкие к w0 и отстоящие от нее на очень малую величину g. Поэтому, хотя I(w) неизвестная и, может быть, сложная функ­ция, важно только ее поведение около w=w0 и можно заменить плавную кривую еще более ровной — «постоянной» — всюду одной высоты. Иначе говоря, мы просто вынесем I(w) из-под знака интеграла и назовем это I(w0). Вынесем за интеграл и остальные постоянные и тогда получим

 

 

Интеграл берется от 0 до ¥, но 0 отстоит так далеко от w0, что кривая за это время идет почти вдоль оси абсцисс, поэтому заменим 0 на -¥, разница небольшая, а интеграл взять легче.

Интеграл вида ∫dx/(x22) приводит к арктангенсу. Если


взглянуть в справочник, то мы увидим, что он равен я/а. Итак, для нашего случая это 2p/g. После небольших манипуляций мы получаем

 

Затем мы подставим сюда формулу (41.6) для у (мы уже не будем стараться писать w0; раз это верно для любой w0, то можно назвать ее просто w), и формула для I(w) примет вид

I(w)=w2kT/p2c2. (41.13)

Она и определяет распределение света в горячей печке. Это так называемое излучение абсолютно черного тела. Черного по­тому, что, если заглянуть в топку печки при абсолютном нуле, она будет черной.

Формула (41.13) задает распределение энергии излучения внутри ящика при температуре Т согласно классической тео­рии. Отметим сначала замечательную особенность этого выра­жения. Заряд осциллятора, масса осциллятора, все частные его свойства выпали из формулы; ведь если мы достигли рав­новесия с одним осциллятором, мы должны позаботиться о равновесии и с любым другим осциллятором другой массы, иначе будут неприятности. Таким образом, это важный способ проверки нашей теоремы о том, что равновесие зависит только от температуры, а не от того, что приводит к равновесию. Те­перь можно начертить кривую I(w) (фиг. 41.4).


Фиг. 41.4. Распределение интен­сивности излучения черного тела при двух температурах.

Сплошные кривые — согласно классиче­ской теории; пунктирные — настоящее распределение, 1— paдuo ; 2 — инфракрасное; 3 — видимое; 4 — ультрафио­летовое; 5 — рентгеновские лучи.

 

Она покажет нам, какова освещенность при разных частотах.

В выражение для интенсивности в ящике на единицу частоты входит, как видно, квадрат частоты; это значит, что если взять ящик при любой температуре, то в нем обнаружится бездна рентгеновских лучей!

Мы знаем, конечно, что это неверно. Когда мы открываем печку и заглядываем в нее, мы не портим глаз рентгеновскими лучами. Дальше — хуже, полная, энергия, ящика, полная ин­тенсивность, просуммированная по всем частотам, должна быть площадью под этой уходящей в бесконечность кривой. Итак, здесь что-то совсем неверно в самой основе.

Это значит, что классическая теория совершенно непригодна для правильного описания распределения излучения черного тела, так же как и для описания теплоемкостей газов. Физики ходили вокруг этого вывода, рассматривали его с различных точек зрения и не нашли выхода. Это предсказание классической физики. Уравнение (41.13) называется законом Рэлея, предска­зано оно классической физикой и до очевидности абсурдно.