Давление газа

Каждый знает, что газ оказывает давление. Но отчего? В этом надо разобраться как следует. Если бы наши уши были намного чувствительнее, чем они есть на самом деле, мы бы все время слышали страшный шум. Но природа позаботилась, чтобы наши уши не были столь восприимчивы, ведь они ока­зались бы для нас совершенно бесполезными — в них постоян­но стоял бы дикий гул, похожий на шум от стартующей ракеты. Дело в том, что барабанные перепонки наших ушей соприкаса­ются с воздухом, а воздух состоит из великого множества беспорядочно движущихся молекул, которые, ударяясь о бара­банные перепонки, создают такой шум, как будто сразу очень много барабанщиков отбивают беспорядочную дробь — бум, бум, бум... Однако мы не слышим этих звуков, потому что ато­мы очень малы, а уши наши недостаточно чувствительны. Бес­порядочные удары молекул должны были бы собственно про­давить барабанную перепонку, но ее непрестанно бомбардируют и с внутренней стороны, и в результате полная сила, действую­щая на перепонку, оказывается равной нулю. Если бы откачать воздух с одной стороны или хотя бы сделать разным его от­носительное количество с обеих сторон, то перепонка прода­вилась бы в ту или иную сторону, потому что бомбардировка с одной стороны оказалась бы гораздо сильнее. Мы иногда ис­пытываем это неприятное ощущение, когда очень быстро под­нимаемся в лифте или на самолете, а хуже всего, если мы еще при этом простужены (в этом случае распухшая слизистая оболочка закрывает каналы, соединяющие через носоглотку внутреннюю полость уха с внешним пространством, и таким образом оба давления не могут быстро уравняться.)

Чтобы проанализировать это явление количественно, пред­положим, что газ находится в ящике, одна стенка которого пред­ставляет собой поршень, способный перемещаться (фиг. 39.1).


Фиг. 39. 1. Атомы газа в ящике, в котором движется поршень без трения.

 

Найдем силу, с которой действуют на поршень находящиеся внутри ящика атомы. О поршень ударяются атомы, дви­жущиеся внутри объема V со всевозможными скоростями. Предположим, что вне ящика ничего нет — сплошной вакуум. Что же произойдет? Если предоставить поршень самому себе и не придерживать его, то с каждым ударом молекулы он будет приобретать небольшой импульс и постепенно будет вытолкнут совсем из ящика. Чтобы удержать его в ящике, придется при­ложить силу F. Какова должна быть эта сила? Говоря о силе, мы будем относить ее к единице площади: если площадь поршня равна А, то действующая на него сила будет пропорциональна площади. Определим давление как величину, равную отноше­нию приложенной к поршню силы к площади поршня:

P =F/A. (39.1)

Чтобы лучше понять, для чего это делается, подсчитаем бесконечно малую работу dW, которую надо затратить, чтобы протолкнуть поршень на бесконечно малое расстояние —dx (позднее это понадобится нам и для других целей); эта работа равна произведению силы на расстояние или, согласно (39.1), произведению давления, площади поршня и расстояния. Все это равно произведению давления на изменение объема, взя­того с обратным знаком:

dW=F(-dx)=-PAdx=-PdV. (39.2)

(Произведение площади А на изменение высоты dx равно из­менению объема.) Знак минус в этом выражении возникает из-за того, что при сжатии объем уменьшается; если принять это во внимание, то мы получим правильный результат: чтобы сжать газ, надо затратить работу.

Итак, с какой силой надо давить на поршень, чтобы уравно­весить удары молекул? При каждом ударе поршню сообщается некий импульс. В каждую секунду поршень получает опреде­ленный импульс и начинает двигаться. Чтобы предотвратить это, приложенная нами сила за секунду должна сообщить поршню точно такой же импульс. Таким образом, сила равна импульсу, сообщенному поршню за 1 сек. Можно об этом ска­зать и иначе: если предоставить поршень самому себе, то он за счет бомбардировки наберет скорость и с каждым ударом будет подталкиваться и двигаться с ускорением. Быстрота изменения скорости поршня, или ускорение, пропорциональна действующей силе. Таким образом, сила, которую мы опреде­лили как произведение давления на площадь, равна импульсу, сообщенному поршню за 1 сек всеми молекулами внутри ящика.

Подсчитать импульс, передаваемый поршню за 1 сек, легко; мы сделаем это в два этапа: сначала определим импульс, пере­данный одним атомом при столкновении с поршнем, а потом умножим эту величину на число соударений атомов с поршнем за 1 сек. Сила и будет произведением этих двух величин.

Займемся теперь этими величинами: предположим сна­чала, что поршень — это идеальный «отражатель» атомов. Если это не так, то вся наша теория рухнет — поршень нач­нет нагреваться и произойдет много всяких событий, предска­зать которые мы не в состоянии. Однако, когда снова устано­вится равновесие, в результате окажется, что каждое столк­новение будет эффективно упругим. В среднем энергия прихо­дящих и уходящих частиц не изменяется. Таким образом, предположим, что газ находится в равновесии и поршень, бу­дучи неподвижным, энергии не поглощает. В этом случае час­тица, подлетевшая к поршню с определенной скоростью, уле­тит от него с той же скоростью, причем масса частицы не из­менится.

Если v есть скорость атома, a vxсоставляющая скорости вдоль оси х, то импульс «к поршню» равен mvx, но раз частица «отражается», то импульс «от поршня» равен той же величине; значит, за одно соударение поршню сообщается импульс 2mvx.

Нужно теперь подсчитать число соударений атома за 1 сек; для этого можно взять любой промежуток времени dt, а потом разделить число соударений на dt. Много ли атомов попадает за это время в цель? Предположим, что в объеме V заключено N атомов, т. е. в каждом единичном объеме имеется n= N/V атомов. Теперь заметим, что за время t достигнут поршня не все частицы, движущиеся к поршню с заданной скоростью, а только те, которые оказались достаточно близко от него. Если частицы были очень далеко, то, хотя они и стремятся к поршню, к сроку они не успеют. Таким образом, за время t о поршень ударятся лишь те частицы, которые в начальный момент были не дальше чем на расстоянии vxt от него. Следо­вательно, число соударений за время t равно числу атомов, находящихся на расстоянии, не превышающем vxt, а поскольку площадь поршня равна А, то атомы, которые со временем по­падут в цель, занимают объем Avxt. А число атомов, попавших в цель, равно произведению объема на число атомов в единич­ном объеме nvxAt. Но нас, конечно, интересует не число соу­дарений за время t, а мы хотим знать число соударений за 1 сек, поэтому мы делим на t и получаем nvxA. (Время t может быть взято очень малым, для красоты можно писать dt и затем дифференцировать, но это все одно и то же.)

Итак, мы нашли, что сила равна

F=nvxA2mvx. (39.3)

Обратите внимание, что если фиксировать плотность частиц, то сила оказывается пропорциональной площади! После этого давление найти очень просто:

P=-2nmv2x. (39.4)

Теперь надо исправить кое-какие неточности: прежде всего не все молекулы имеют одну и ту же скорость и не все они дви­жутся в одном направлении, так что нам приходится иметь дело с разными v2x! Каждая молекула, ударяясь о поршень, вносит свой вклад, поэтому надо взять среднее по всем молеку­лам. Сделав это, мы получим

P=nm<v2x>. (39.5)

А не забыли ли мы множитель 2? Нет, потому что лишь поло­вина атомов движется к поршню. Другие летят в проти­воположную сторону, а усредняя по v2x, мы усредняем как по положительным, так и по отрицательным составляющим vx.

Если просто усреднить по v2x, получится вдвое больший ре­зультат. Среднее v2x для положительных vx равно половине среднего v2x для всех vx.

Но атомы прыгают в ящике как хотят, и поэтому ясно, что x-направление» для них ничем не отличается от любого дру­гого; они движутся куда угодно: вправо — влево, вверх — вниз, взад — вперед. Поэтому <v2x> (средний квадрат скорости движения в одном направлении) равен среднему квадрату скорости в любом другом направлении

<v2x>=<v2y>=<v2z>. (39.6)

Используем это обстоятельство для небольшого математичес­кого трюка и обнаружим, что каждый из членов в (39.6) равен ихсумме, деленной на три, а сумма — это квадрат величины скорости:

<v2x>=1/3<v2x+v2y+v2z>=<v2>/3. (39.7)

Это очень хорошо, потому что теперь уже не надо заботиться о координатных осях, и формулу для давления можно записать в виде

P=2/3n(mv2/2). (39.8)

Мы выделили множитель <mv2/2>, потому что это кинетичес­кая энергия движения молекулы как целого. Итак, мы нашли

PV=N2/3(mv2/2). (39.9)

Если мы будем знать скорость молекул, то очень быстро под­считаем давление.

В качестве простого примера можно описать такие газы, как гелий, пары ртути или калия при достаточно высокой тем­пературе или аргон; это одноатомные газы, для которых можно считать, что их атомы не имеют внутренних степеней свободы. Если нам попадется сложная молекула, то в ней могут быть всевозможные внутренние движения, всякого рода колебания и т. д. Мы предполагаем, что можно не принимать их в расчет; но можно ли это делать — вопрос сложный и мы к нему вер­немся; в действительности для нашего случая это окажется допустимым. Итак, предположим, что внутреннее движение атомов можно не рассматривать, и поэтому кинетическая энер­гия движения молекулы как целого восполняет всю энергию. Для одноатомного газа кинетическая энергия — действительно полная энергия. Будем обозначать полную энергию буквой U (иногда ее называют полной внутренней энергией, как-будто у газа может быть какая-то внешняя энергия), т. е. всю энергию всех молекул газа или любого другого объекта.

В случае одноатомного газа мы предположим, что полная энергия U равна произведению числа атомов на среднюю кине­тическую энергию каждого из них, потому что мы пренебрегли возможным возбуждением атомов или какими-то внутриатом­ными движениями. Тогда

PV=2/3U. (39.10)

Немного задержимся и ответим на такой вопрос: предпо­ложим, что мы медленно сжимаем газ; каким должно быть давление, чтобы сжать газ до заданного объема? Определить это легко, так как давление есть энергия, деленная на объем. Но когда газ сжимается, производится работа и поэтому энер­гия газа U возрастает. Процесс сжатия описывается неким диф­ференциальным уравнением. В начальный момент газ занимает определенный объем и обладает определенной энергией, поэ­тому нам известно и давление. Как только мы начинаем сжи­мать газ, энергия U возрастает, объем V уменьшается, а как изменяется давление, нам еще предстоит узнать.

Итак, нам предстоит решить дифференциальное уравнение. Сейчас мы это сделаем. Однако подчеркнем сначала, что, сжи­мая газ, мы предполагаем, что вся работа уходит на увеличение энергии атомов газа. Вы спросите: «А необходимо ли на этом останавливаться? Куда же еще она может уйти?» Но оказыва­ется, что затраченная работа может уйти и в другое место. Энергия может «вытечь» из ящика сквозь стенки: горячие (т. е. очень быстрые) атомы при бомбардировке будут нагревать стенки ящика и энергия выйдет наружу. Но мы предполагаем, что в нашем случае этого не происходит.

Сделаем небольшое обобщение, хотя и в этом случае мы бу­дем рассматривать лишь очень частный случай: запишем вместо PV=2/3U

PV = (g-1)U. (39.11)

Энергия U умножается на (g-1) для удобства, потому что в дальнейшем нам придется иметь дело с газами, для которых множитель перед U равен не 2/3, а какому-то другому числу. Чтобы можно было описывать и такие случаи, запишем этот множитель так, как его обозначают почти сто лет. Тогда в на­шем случае одноатомного газа, такого, как гелий, g=5/з, потому что 5/3-1=2/з.

Мы уже говорили, что совершаемая при сжатии газа работа равна -PdV. Сжатие, при котором тепло не поглощается и не выделяется, называется адиабатическим сжатием; это слово образовано из трех греческих слов: а(не)+dia(сквозь)+bainein(проходить). (Слово адиабатический употребляется в фи­зике в разных смыслах, так что не всегда можно понять, что между ними общего.) При адиабатическом сжатии вся затрачен­ная работа уходит на изменение внутренней энергии. Вот в этом и смысл, что нет потерь энергии и, значит, PdV=-dU. Но поскольку U=PV/g-1, то можно записать

dU=(PdV+VdP)/(g-1). (39.12)

Итак, PdV =-(PdV+VdP)/ (g-1) или, приводя подобные чле­ны, получаем gPdV=-VdP, или

gdv/v+dp/p=0, (39.1З)

Если мы примем, что g постоянна, а это так в случае одно­атомных газов, то уравнение интегрируется и мы получаем glnV+lnP=lnC, где С — постоянная интегрирования. Пе­реходя к степеням, мы получаем такой закон:

PVg=C (постоянная). (39.14)

Иначе говоря, если выполнены условия адиабатичности, т. е. потерь энергии нет и газ при сжатии нагревается, то в случае одноатомного газа произведение объема на давление в сте­пени 5/3 есть величина постоянная! Этот результат мы полу­чили чисто теоретически, но опыт показывает, что и в действи­тельности все происходит именно так.