Коэффициент полезного действия идеальной машины

А сейчас попробуем найти закон, определяющий работу W как функцию Q1, Т1 и Т2 . Ясно, что W пропорционально Q1, ибо если две обратимые машины работают в параллель, то такая сдвоенная машина тоже будет обратимой машиной. Если каждая из этих машин поглощает тепло Q1, то обе сразу поглощают 2Q1, а работа, которую они совершают, равна 2 W и т. д. Поэтому пропорциональность W затраченному теплу Q1 вполне естественна.

После этого сделаем еще один важный шаг к универсальному закону. В качестве рабочего вещества машины можно взять одно вещество с хорошо известными нам свойствами. Восполь­зуемся этим и выберем идеальный газ. Можно и не делать этого, а вывести интересующее нас правило чисто логически, совсем не используя для этого какого-то вещества. Это одно из самых блестящих теоретических доказательств в физике, но пока мы используем менее абстрактный и более простой метод прямого вычисления.

Нам нужно лишь получить формулы для Q1 и Q2 (ведь W=Q1-Q2) — тепла, которым машина обменивается с резерву­арами во время изотермического расширения и сжатия. Для примера вычислим Q1тепло, полученное от резервуара при температуре T1 во время изотермического расширения (кривая 1 на фиг. 44.6) от точки а, где давление равно pa, объем Va, тем­пература Т1, до точки b, где давление равно рb, объем Vb, а тем­пература та же самая T1. Энергия каждой молекулы идеального газа зависит только от температуры, а поскольку в точках а и b одинаковы и температура, и число молекул, то и внутренняя энергия тоже одинакова. Энергия U не изменяется; полная рабо­та газа в период расширения

W=ab∫pdV

а

совершается за счет энергии Q1 , полученной из резервуара. Во время расширения pV=NkT1 или

p-NkT1/V; значит,


 

т. е.

Q1=NkT1ln(Vb/Va).

Вот то тепло, которое взято из резервуара при температуре Т1. Точно так же можно вычислить и тепло, отданное при сжатии (кривая 3 на фиг. 44.6) резервуару при температуре T2:

Q2=NkT2ln(Vc/Vd). (44.5)

Чтобы закончить анализ, нужно еще найти соотношение между Vc/Vd и Vb/Va. Для этого взглянем сначала на кривую 2, которая описывает адиабатическое расширение от b до c. В это время pVg остается постоянным. Поскольку pV=NkT, то фор­мулу для адиабатического расширения в конечных точках пути можно записать в виде (pV)Vg-1=const, или TVg-1=const, т. е.

T1Vbg-1=T2Vcg-1. (44.6)

Так как кривая 4 описывает адиабатическое сжатие от d до а, то

Т1Vag-1=T2Vdg-1. (44.6а)

Если поделить эти равенства одно на другое, то мы выясним, что отношения Vb/Va и Vc/Vd равны, поэтому равны и лога­рифмы в (44.4) и (44.5). Значит,

Q1/T1=Q2/T2. (44.7)

Это и есть то соотношение, которое мы искали. Хотя оно дока­зано для машины с идеальным газом, мы уже знаем, что оно справедливо для любой обратимой машины.

А теперь посмотрим, как можно вывести этот универсальный закон на основании только логических аргументов, не интере­суясь частными свойствами веществ. Предположим, что у нас есть три машины и три температуры Т1, Т2 и Т3. Одна машина поглощает тепло Q1 при температуре T1, производит работу W13 и отдает тепло Q3 при температуре T3 (фиг. 44.8).


Фиг. 44.8. Спаренные машины 1 и 2 эквивалентны машине 3.

 

Другая машина работает при перепаде температур t2 и Т3. Предположим, что эта машина устроена так, что она поглощает то же тепло Q3 при температуре Т3 и отдает тепло Q2. Тогда нам придется затратить работу W32, ведь мы заставили машину работать в обратном направлении. Цикл первой машины заклю­чается в поглощении тепла Q1 и выделении тепла Q3 при тем­пературе Т3. Вторая машина в это время забирает из резер­вуара то же самое тепло Q3 при температуре T3 и отдает его в резервуар с температурой Т2. Таким образом, чистый резуль­тат цикла этих спаренных машин состоит в изъятии тепла Ql при температуре Т1 и выделении тепла Q2 при температуре T2. Эти машины эквивалентны третьей, которая поглощает тепло Ql при температуре Т1, совершает работу W12 и выделяет тепло Q2 при температуре Т2. Действительно, исходя из первого за­кона, можно сразу же показать, что W12=W13-W32:

W13-W32=(Q1-Q3)=(Q2-Q3)=Q1-Q2=W12 . (44.8)

Теперь можно получить закон, связывающий коэффициенты полезного действия машин. Ведь ясно, что между эффективностями машин, работающих при перепаде температур Т2-T3, t23 и Т12, должны существовать определенные соотно­шения.

Сформулируем пояснее наши аргументы. Мы убедились, что всегда можем связать тепло, поглощенное при температуре T1 и тепло, выделенное при температуре T2, определив тепло, выделенное при какой-то другой температуре T3. Это значит, что мы можем описать все свойства машины, если введем стан­дартную температуру и будем анализировать все процессы с помощью именно такой стандартной температуры. Иначе говоря, если мы знаем коэффициент полезного действия машины, рабо­тающей между температурой Т и какой-то стандартной темпе­ратурой, то сможем вычислить коэффициент полезного действия машины, работающей при любом перепаде температур. Ведь мы рассматриваем только обратимые машины, поэтому ничто не мешает нам спуститься от начальной температуры к стандарт­ной, а потом снова вернуться к конечной температуре. Примем температуру в один градус за стандартную. Для обозначения выделяемого при стандартной температуре тепла используем особый символ Qs. Это значит, что если машина поглощает при температуре Т тепло Q, то при температуре в один градус она выделяет тепло QS. Если какая-то машина, поглощая тепло Q1 при T1, выделяет тепло QS при температуре в один градус, а другая машина, поглотив тепло Q2 при Т2, выделяет то же самое тепло QS при температуре в один градус, то машина, поглощающая Q1 при Т1 , должна при температуре Т2 выделять тепло Q2. Мы уже доказали это, рассмотрев три машины, ра­ботающие при трех температурах. Таким образом, для полного описания работы машин нам остается узнать совсем немного. Мы должны выяснить, сколько тепла Q1 должна поглотить ма­шина при температуре T1 , чтобы выделить при единичной тем­пературе тепло QS. Конечно, между теплом Q и температурой Т существует зависимость. Легко понять, что тепло должно воз­растать при возрастании температуры, ведь мы знаем, что если заставить работать машину в обратном направлении, то при более высокой температуре она отдает тепло. Легко также по­нять, что тепло Q1 должно быть пропорционально QS. Таким образом, наш великий закон выглядит примерно так: Каждому количеству тепла QS, выделенного при температуре в один градус, соответствует количество тепла, поглощенного машиной при температуре Т, равное QS, умноженному на не­которую возрастающую функцию Q температуры:

Q=QSf(T). (44.9)