Храповик как машина

Пойдем дальше. Рассмотрим другой пример: температура вертушки T1, а температура храповика Т2; T2 меньше Т1. Так как храповик холодный и флуктуации собачки сравнитель­но редки, ей теперь очень трудно раздобыть энергию e. Но из-за того, что вертушка горячая, она часто получает энергию e, и наше устройство начнет, как и задумано, вертеться в одну сторону.

Посмотрим-ка, удастся ли нам теперь поднимать грузы. Привяжем к барабану нить и привесим к ней грузик вроде нашей блошки. Пусть L будет момент, создаваемый грузом. Если мо­мент L не очень велик, наша машина груз поднимет, так как из-за броуновских флуктуации повороты в одну сторону веро­ятнее, чем в другую. Определим, какой вес мы сможем поднять, как быстро он будет подниматься и т. д.

Сперва рассмотрим движение вперед, для которого храповик и предназначен. Сколько энергии нужно занять у вертушки, чтобы продвинуться на шаг? Чтобы поднять собачку, нужна энер­гия e. Чтобы повернуть храповик на угол q против момента L, нужна энергия Lq. Всего нужно занять энергию e+Lq. Вероят­ность заполучить ее равна ехр[-(e+Lq)/kT1. В действитель­ности дело не только в самой этой энергии, но и в том, сколько, раз в секунду она окажется в нашем распоряжении. Вероят­ность в секунду только пропорциональна ехр[-(e+Lq)/kT1]; обозначим коэффициент пропорциональности 1/t (он в конце выкладок выпадет). После каждого шага вперед совершенная над грузом работа есть Lq. Энергия, взятая у вертушки, равна e+Lq. Энергией e наматывается нить, затем следует: щелк, щелк, клингенкланггеклунген..., и энергия переходит в тепло, Вся одолженная энергия идет на то, чтобы поднять блошку и собачку, которая потом падает и отдает тепло другой стороне (храповику).

Рассмотрим теперь случай обратного вращения. Что проис­ходит здесь? Чтобы храповик повернулся назад, надо лишь снабдить собачку такой энергией, чтоб ей хватило сил подняться и пропустить храповик. Эта энергия по-прежнему равна e. Вероятность (в пересчете на секунду) того, что собачка подни­мется на нужную высоту, теперь равна (1/t)ехр(-e/kT2). (Множитель пропорциональности тот же, но в показателе стоит kT2 из-за того, что температура иная.) Когда это случается, т. е. зубчатка проскальзывает назад, работа уже высвобождается (высвободился один зубец, а вместе с ним и работа Lq). Энергия, взятая у системы храповик — собачка, есть e, а энергия, пере­данная газу на другом конце оси при температуре T1, есть Lq+e. Это тоже легко понять. Положим, что собачка поднялась сама собой за счет флуктуации. Когда она упадет и пружинка ударит ее по зубцу, возникнет сила, стремящаяся повернуть зубчатку, ведь плоскость-то, о которую ударилась собачка, наклонная. Эта сила производит работу; то же можно сказать о весе грузика. Обе силы суммируются, и вся медленно высво­бождаемая энергия появляется в виде тепла на той стороне, где вертушка. (Конечно, так и должно быть по закону сохра­нения энергии, но мы обязаны осторожно продумать все на­сквозь!)

Мы замечаем, что все эти энергии в точности те же, что и раньше, только переставлены. Итак, смотря по тому, какое из отношений больше, грузик либо медленно поднимается, либо медленно опускается. Конечно, на самом деле он непрерывно ходит туда-сюда, покачивается, но мы говорим об усредненном поведении.

Положим, что при определенном весе вероятности окажутся равными. Тогда привесим к нити бесконечно легкий грузик. Весь груз медленно пойдет вниз, и машина будет совершать работу, энергия будет откачиваться от храповика и пересылаться вертушке. Если же убрать часть груза, неравновесность переки­нется на другую сторону. Груз поднимается, тепло отбирается от вертушки и поставляется шестерне. Мы попадаем в условия обратимого цикла Карно благодаря тому, что груз выбран как раз так, чтобы обе вероятности были равны. Это условие таково: (e+Lq)/T1=e/T2. Пусть машина медленно тянет груз вверх.

Таблица 46.1 • ОПЕРАТИВНАЯ СВОДКА ДЕЙСТВИЙ ХРАПОВИКА И СОБАЧКИ

 


 

Энергия Ql отбирается от лопастей, а энергия Q2 доставляется шестерне, и эти энергии находятся в отношении (e+Lq)/e. Когда мы опускаем груз, то опять Q1/Q2=(e+Lq)/e. Итак (табл. 46.1), мы имеем

Q1/Q2=T1/T2. Далее, полученная работа относится к энергии, взятой у вер­тушки, как Lq к Lq+e, т. е. как (T12)/Т1. Мы видим, что наше устройство, работая обратимо, ни за что не сможет высо­сать работы больше, чем позволяет это отношение. Это тот вывод, которого мы и ожидали на основе доказательства Карно, а од­новременно и главный результат этой лекции.

Однако мы можем использовать наше устройство, чтобы по­нять еще кое-какие явления, даже неравновесные, лежащие вне области применимости термодинамики.


Давайте подсчитаем теперь, как быстро наш односторонний механизм будет вращаться, если все его части одинаково нагре­ты, а к барабану подвешен грузик. Если мы потянем чересчур сильно, могут произойти любые неприятности. Собачка соскользнет вдоль храповика, пружинка лопнет или еще что-нибудь случится. Но предположим, мы тянем так осторожно, что все работает гладко. В этих условиях верен вышеприведен­ный анализ вероятностей поворота храповика вперед или назад, и нужно только учесть равенство температур. С каждым скач­ком валик поворачивается на угол 9, так что угловая скорость равна величине 9, помноженной на вероятность одного из этих скачков в секунду. Ось поворачивается вперед с вероятностью (1/t)ехр[-e+Lq)/kT], а назад она поворачивается с вероят­ностью (1/t)ехр(-e/kT). Угловая скорость равна

 

График зависимости w от L показан на фиг. 46.2.

 

 


 

Фиг. 46.2. Угловая скорость храповика как функция враща­тельного момента.

 

Мы видим, что, когда L положительно, результат один, когда отрицательно — совсем другой. Если L растет, будучи положительным, что бывает, когда мы хотим повернуть храповик назад, скорость вра­щения назад близка к постоянной величине. А когда L стано­вится отрицательным, w поистине «рвется вперед», так как у e показатель степени огромен! Таким образом, угловая скорость, вызываемая действием разных сил, весьма несимметрична. Пойти в одну сторону легко: мы получаем большую угловую скорость от маленькой силы. Идя в обратную сторону, мы можем прило­жить много усилий, а вал все же будет двигаться еле-еле.

Такое же положение возникает в электрическом, выпрямите­ле. Вместо силы там имеется электрическое поле, а взамен угловой скорости — сила тока. Для выпрямителя напряжение тоже не пропорционально сопротивлению, наблюдается та же несимметричность. Анализ, проделанный нами для механиче­ского выпрямителя, годится и для электрического. Вид полу­ченной выше формулы типичен для зависимости пропускной способности выпрямителя от напряжения.

Уберем теперь все грузики и обратимся к первоначальному механизму. Если бы Т2 было меньше Т1, храповик вертелся бы вперед. Этому поверит любой. Но вот во что трудно поверить сразу, так это в обратное. Если T2 больше T1, храповик вращает­ся назад! Динамический храповик с избытком теплоты внутри вертится назад, потому что собачка храповика отскакивает. Если собачка в какой-то момент находится на наклонной пло­скости, она толкает эту плоскость в сторону подъема. Но это происходит все время, ведь если случится, что собачка подни­мется достаточно высоко, чтобы проскочить край зубца, она окажется на новой наклонной плоскости. Словом, горячие храповик с собачкой идеально приспособлены для вращения в сторону, обратную той, в какую им первоначально предназна­чено было вертеться!

Как бы хитроумно мы ни сконструировали «однобокий» ме­ханизм, при равенстве температур он не захочет вертеться в одну сторону чаще, чем в другую. Когда мы смотрим на него, он может поворачиваться либо туда, либо сюда, но при продол­жительной работе ему никуда не уйти. Тот факт, что он не уйдет никуда, на самом деле фундаментальный, глубокий принцип; все в термодинамике покоится на нем.