Экспоненциальная атмосфера

Мы уже изучали некоторые свойства боль­шого числа сталкивающихся атомов. Наука, которая занимается этим, называется кине­тической теорией, и она описывает свойства вещества, рассматривая, как сталкиваются атомы. Мы утверждаем, что все свойства веще­ства в целом можно объяснить, рассматривая движение отдельных его частей.

Пока мы ограничимся случаем теплового равновесия, т. е. всего лишь подклассом всех явлений природы. Законы механики, приме­няемые в условиях теплового равновесия, по­лучили название статистической механики, и в этой главе вы немного познакомитесь с не­которыми основными теоремами этой науки.

Одна теорема статистической механики вам уже известна. Согласно этой теореме, для любого движения при абсолютной темпера­туре Т средняя кинетическая энергия каждого независимого движения (каждой степени сво­боды) равна 1/2kT. После этого нам становится кое-что известно о среднем квадрате скорости атомов. Теперь нам необходимо узнать чуть побольше о координатах атомов, чтобы выяс­нить, много ли их находится при тепловом равновесии в той или иной точке пространства, а также немного подробнее изучить распре­деление атомов по скоростям. Хотя мы зна­ем, чему равен средний квадрат скорости, мы все же не можем ответить на вопрос, сколько атомов обладают скоростью, в три раза боль­шей, чем корень из среднего квадрата скорости, или скоростью, равной одной четверти корня из среднего квадрата скорости. А вдруг все атомы имеют одинаковую скорость?

Итак, вот два вопроса, на которые мы попытаемся дать ответ: 1) Как атомы располагаются в пространстве, когда на них действуют силы? 2) Каково распределение атомов по ско­ростям?

Заметим, что это два совершенно независимых вопроса и что распределение по скоростям всегда одинаково. Этого можно было ожидать после того, как мы выяснили, что средняя кине­тическая энергия степени свободы всегда равна 1/2kT, незави­симо от того, какие силы действуют на молекулы. Распределе­ние по скоростям молекул не зависит от сил, потому что силы не влияют на частоту столкновений.

Давайте начнем с примера распределения молекул в атмос­фере, подобной той, в которой мы живем, но без ветра или дру­гих каких-либо возмущений.

Предположим, что мы имеем дело с довольно высоким стол­бом газа, находящегося в тепловом равновесии (не так, как в настоящей атмосфере; в ней, как известно, по мере подъема вверх становится холоднее). Укажем здесь, что нарушение равновесия в случае разницы температур на разных высо­тах можно продемонстрировать, поместив в столб газа металли­ческий стержень так, что его концы соприкасаются с малень­кими шариками (фиг. 40.1).

 


 

Фиг. 40. 1. Равновесие в атмос­фере с постоянной температурой.

Давление на высоте h должно превосхо­дить давление на высоте h+dh на вес заключенного между этими уровнями газа. Стержень и шарики выравнивают температуру.

 

Нижние шарики, получая от мо­лекул газа энергию l/2kT, передают ее через стержень верхним шарикам и встряхивают их; верхние шарики в свою очередь будут встряхивать соприкасающиеся с ними наверху молекулы. В конце концов, конечно, температура на разных высотах гра­витационного поля станет одинаковой.


Нам предстоит найти закон, по которому происходит раз­режение атмосферы по мере подъема вверх, когда температура на всех высотах одинакова. Если N — полное число молекул в объеме V газа с давлением Р, то PV=NkT, или Р=nkT, где nчисло молекул в единичном объеме. Иначе говоря, если известно число молекул в единичном объеме, то известно и давление, и наоборот: давление и плотность пропорциональ­ны друг другу, ведь температура в нашем случае постоянна. Но давление не может быть постоянным: с уменьшением высоты оно должно возрастать, потому что нижнему слою приходится, так сказать, выдерживать вес всех расположенных сверху ато­мов. Теперь можно определить, как давление меняется с высо­той. Если на высоте h выделить площадку единичной площади, то на эту площадку снизу будет действовать сила, равная давле­нию Р. Если бы не было силы тяжести, то на площадку на вы­соте h+dh действовала бы сверху вниз точно такая же сила. Но в нашем случае это не так: действующая снизу сила должна превосходить силу, действующую сверху, на величину, равную весу газа, заключенного между слоями h и h+dh. На каждую молекулу действует сила тяжести mg, где g — ускорение силы тяжести. В интересующем нас слое находится ndh молекул. Это приводит к такому дифференциальному уравнению: Ph+dh-Ph=dP=-mgndh. Поскольку Р=nkT, а Т—посто­янная, то можно избавиться или от Р, или от n. Исключим из уравнений Р; тогда получим

 

Это дифференциальное уравнение говорит нам, как убывает плотность по мере увеличения высоты.

Мы располагаем теперь дифференциальным уравнением для плотности частиц n, которая меняется с высотой, но ме­няется так, что производная плотности пропорциональна себе самой. Функция, производная которой пропорциональна себе самой,— это экспоненциальная функция и, значит, решение дифференциального уравнения имеет вид

n=n0e-mgh/kT. (40.1)

Здесь постоянная интегрирования n0плотность на высоте h=0 (которую можно задать произвольно); с высотой плот­ность экспоненциально убывает.

Заметим, что если имеется несколько сортов молекул с разными массами, то число их убывает по разным экспонентам. Число более тяжелых молекул убывает с высотой быстрее, чем число легких молекул. Поэтому можно ожидать, что раз кислород тяжелее азота, то по мере подъема вверх относитель­ное содержание азота в атмосфере (смеси азота и кислорода) будет возрастать. В нашей атмосфере, во всяком случае на доступных высотах, этого фактически не происходит, ибо вслед­ствие воздушных возмущений газы вновь перемешиваются.

 

 

Ведь это же не изотермическая атмосфера. Тем не менее на больших высотах преобладают очень легкие газы, например водород, так как молекулы легких газов способны забраться на такую высоту, где все остальные экспоненты уже вымрут (фиг. 40.2).


 

Фиг. 40.2. Нормированная плотность как функция высоты в гравитационном поле Земли для кислорода и водорода при постоян­ной температуре.