Распределение молекул по скоростям

Обсудим теперь распределение молекул по скоростям, по­тому что интересно, а иногда и полезно знать, какая часть мо­лекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энер­гию силы тяжести. Если бы между атомами существовали вза­имные силы, то нам, конечно, пришлось бы написать что-ни­будь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправда­ние. Мы видим, что на высоте h находится гораздо меньше мо­лекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.


Фиг. 40.4. Высоты h достигают только те молекулы, скорость ко­торых на высоте h=0 достаточно велика.

 

Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медлен­но, и они не способны взобраться на потенциальную гору до высоты h. Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достиже­ния высоты h. Их ровно столько, чтобы создать нужное падение плотности при увеличении h.

Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них про­ходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число мо­лекул в секунду с заданной скоростью. Затем отметим следую­щее: если через u обозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu2/2=mgh), то число молекул в секунду, поднимающихся с ниж­ней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает и, не
достигают верхней плоскости. Таким об­разом,

 


Но число молекул, пересекающих h с любой скоростью, большей нуля, меньше числа молекул, пересекающих нижний уровень с любой скоростью, большей нуля, хотя бы потому, что внизу больше атомов. Вот и все, что нам нужно. Мы уже знаем, что распределение молекул по скоростям на всех высо­тах одинаково, ведь мы уже выяснили, что температура во всей атмосфере одинакова. Но поскольку распределение ско­ростей всюду одинаково и число атомов, пересекающих нижний уровень, больше, то ясно, что отношение n>0(h) (числа ато­мов, пересекающих высоту h с положительной скоростью) и n>0(0) (числа атомов, пересекающих с положительной ско­ростью высоту 0) равно отношению плотностей на этих высотах, т. е. ехр(—mgh/kT). Но n>0(h)=h>u(0), поэтому

 

поскольку 1/2mu2=mgh. Теперь скажем это своими словами: число молекул, пересекающих за 1 сек единичную площадь

 

 

на высоте 0 с вертикальной составляющей скорости, превышаю­щей и, равно произведению числа молекул, пересекающих эту площадку со скоростью, большей нуля, на ехр(-mu2/2kT).

Это верно не только для произвольной высоты 0, но и для любой другой высоты, поэтому распределение по скоростям одинаково повсюду! (Окончательный результат не включает высоты h, она появляется только в промежуточных рассужде­ниях.) Это общая теорема о распределении по скоростям. В ней утверждается, что если в столбе газа просверлить крохот­ную дырочку, ну совсем малюсенькую, так что столкновения там будут редки и длина пробега молекул между столкнове­ниями будет много больше диаметра дырочки, то молекулы будут вылетать из нее с разными скоростями, но доля частиц, вылетающих со скоростью, превышающей и, равна ехр(-mu2/2kT).

Теперь вернемся к вопросу о том, можно ли пренебрегать столкновениями. Почему это не имеет значения? Мы могли бы повторить все наши доводы, используя не конечную высоту h, а бесконечно малую высоту h, столь малую, что для столкнове­ний между высотами 0 и h было бы слишком мало места. Но это не обязательно: наши доводы, очевидно, основаны лишь на анализе значений энергий и на сохранении энергии; при столкновениях же происходит обмен энергиями среди молекул. Но нам довольно безразлично, следим ли мы за одной и той же молекулой, раз происходит лишь обмен энергиями с другой молекулой. И получается, что если мы даже сделаем это доста­точно тщательно (а такую работу тщательно проделать, конечно, труднее), то результат будет тот же.

Интересно, что найденное нами распределение по скоростям имеет вид

n>u~e-к.э./kT. (40.4)

Этот способ описания распределения по скоростям —когда подсчитывается число молекул, проходящих через выделенную площадку с заданной минимальной z-составляющей скорости,— отнюдь не самый удобный. Например, чаще хотят знать, сколько молекул в заданном объеме газа движется, имея z-составляющую скорости между двумя заданными значениями, а это, конечно, из (40.4) сразу не получишь. Поэтому придадим нашей формуле удобную форму, хотя то, что мы получили, — это весьма общий результат. Заметим, что невозможно утверж­дать, что любая молекула в точности обладает той или иной наперед заданной скоростью; ни одна из них не движется со скоростью, в точности равной 1,7962899173 м/сек. Итак, чтобы придать нашему утверждению какой-то смысл, мы должны спросить, сколько молекул можно найти в заданном интервале скоростей. Нам придется говорить о том, как часто встречаются скорости в интервале между 1,796 и 1,797 и т. п. Выражаясь математически, пусть f(u)du будет долей всех молекул, чьи скорости заключены в промежутке u и u+du, или, что то же самое (если du бесконечно мало), долей всех молекул, имею­щих скорость и с точностью до du. На фиг. 40.5 представлена возможная форма функции f(u), а заштрихованная часть ширины du и средней высоты f(u) — это доля молекул f(u)du. Таким образом, отношение площади заштрихованного участка ко всей площади под кривой равно относительному числу молекул со скоростью и внутри отрезка du.


 

Фиг. 40.5. Функция, распределения скоростей.

Заштрихованная площадь равна f(u)du это относи­тельное число частиц, ско­рости которых заключены внутри отрезка du около точки u.

Если опре­делить f(u) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

 


Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f(u) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышаю­щей u?

 

Это число не равно интегралу (хотя это первое, что приходит в голову), ведь нас интересует число молекул, про­ходящих через площадку за секунду. Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более мед­ленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)


Полное число молекул, проходящих через поверхность за время t, равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut. Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с дан­ной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-ви­димому, должны пройти, а это расстояние пропорционально и. Значит, нам предстоит вычислить интеграл от произведения и на f(u)du, взятый от и до бесконечности, причем мы уже зна­ем, что этот интеграл обязательно должен быть пропорционален ехр(-mu2/2kT), а постоянную пропорциональности еще надо определить:

 


Если теперь продифференцировать интеграл по и, то мы получим подынтегральное выражение (со знаком минус, по­тому что и — это нижний предел интегрирования), а диффе­ренцируя правую часть равенства, мы получим произведение и на экспоненту (и на некоторую постоянную). Сократим в обеих частях и, и тогда

 

Мы оставили в обеих частях равенства du, чтобы помнить, что это распределение; оно говорит нам об относительном числе молекул, имеющих скорость между u и u+du.

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать, что


Используя это обстоятельство, легко найти С=Ö(m/2pkT).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отне­сенное к единице импульсной шкалы, также пропорционально ехр(-к.э./kT). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в тер­минах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

f(p)dp=ce-к.э./kTdp. (40.8)

Это значит, что мы установили, что вероятности, определяе­мые энергиями разного происхождения (и кинетической и по­тенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распре­делении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить пол­ное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функ­цией u2 — вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv2x/2, mv2y/2 и mv2z/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:


f(vx,, vy, vz) dvx dvy dvz ~

 

 

Вы можете убедиться в том, что эта формула верна, ибо, во-первых, распределение зависит только от v2 и, во-вторых, ве­роятности данных vг получаются после интегрирования по всем vx и vy и это должно привести к (40.7). Но обоим этим тре­бованиям удовлетворяет только функция (40.9).