Механические характеристики

 

В реальном исполнительном двигателе с амплитудно-фазовым управлением регулируется напряжение управления . Ток возбуждения при этом практически не меняется из-за большой величины намагничивающего тока, вследствие чего напряжение на обмотке возбуждения изменяется в сравнительно небольших пределах. Поэтому характеристики двигателя при данном способе управления будут близки к характеристикам при амплитудном управлении.

Рис. 2.33. Механические (а) и регулировочные (б) характеристики реального (сплошные линии) и идеального (пунктирные) асинхронного двухфазного двигателя при амплитудно-фазовом управлении.

 

На рис. 2.33а показаны механические характеристики реального двигателя при амплитудно- фазовом управлении (сплошные линии) и идеализированного двигателя при амплитудном управлении (пунктирные линии). При относительная скорость холостого хода меньше единицы. Это объясняется тем, что круговое вращающееся поле имеет место только при . При вращении ротора сопротивление его меняется, а следовательно, несколько меняются ток возбуждения и напряжение на обмотке возбуждения. Таким образом, даже при появляется обратное вращающееся поле, которое снижает скорость холостого хода по сравнению с идеализированным двигателем при амплитудном управлении. При скорости холостого хода становятся сначала близкими, а затем даже большими скорости холостого хода для идеализированного двигателя. Это объясняется тем, что действие токов обратной последовательности в реальном двигателе уменьшается по сравнению с идеализированным из-за наличия индуктивного сопротивления в обмотке ротора.

Нелинейность механических характеристик двигателя при амплитудно-фазовом управлении больше, чем при других методах управления, вследствие увеличения амплитуды обратного поля при повышении скорости вращения.

Общий вид регулировочных характеристик двигателя остается примерно таким же, как и при амплитудном управлении (рис. 2.33б), но линейность их несколько уменьшается.

По мере возрастания скорости двигателя мощность возбуждения увеличивается, так как одновременно происходит некоторое повышение напряжения на обмотке возбуждения из-за уменьшения падения напряжения на конденсаторе. Так как в двигателе с полым немагнитным ротором основной составляющей тока статора является ток холостого хода, то ток статора с изменением режима работы двигателя изменяется мало. Мало изменяется и мощность возбуждения, увеличиваясь на 10 – 20% при переходе от режима короткого замыкания к холостому ходу. Мощность управления при амплитудно-фазовом управлении, как и при амплитудном управлении, пропорциональна коэффициенту сигнала и сравнительно мало зависит от скорости вращения. Все другие характеристики (механическая мощность, КПД и др.) при амплитудно-фазовом управлении мало отличаются от характеристик двигателя при амплитудном управлении.

Достоинством амплитудно-фазового управления является сравнительная простота схемы и возможность получения значительных пусковых моментов, недостатком – некоторое снижение устойчивости в зоне малых скоростей.

 

2.4.9. Электромеханическая постоянная времени исполнительных двигателей

 

Время разгона исполнительного двигателя определяется, главным образом, электромеханическими переходными процессами, т. к. из-за значительного активного сопротивления электромагнитные переходные процессы в них быстротечны. Электромеханическая постоянная времени примерно на порядок больше электромагнитной постоянной времени . Значение определяется из основного уравнения динамики для двигателя при условии разгона его ротора от неподвижного состояния до скорости холостого хода при статическом моменте на валу . При этих условиях основное уравнение динамики

принимает вид

, (2.105)

где

- момент инерции ротора.

Обычно электромеханическую постоянную времени определяют исходя из пускового момента . Для идеализированного двигателя при прямолинейной механической характеристике

, (2.106)

где

- скорость холостого хода.

Следовательно, можно записать

или

Решив это уравнение, получим

, (2.107)

где

- электромеханическая постоянная

времени:

(2.108)

 

Физически электромеханическая постоянная времени представляет собой время, необходимое для разгона двигателя от неподвижного состояния до достижения скорости холостого хода при постоянном моменте на валу и . В действительности момент, действующий на вал ротора в процессе разгона уменьшается, вследствие чего время разгона до скорости оказывается большим .

В двигателе с амплитудным управлением

, (2.109)

где

- синхронная скорость, соответствующая круговому вращающемуся полю и пусковому моменту .

Поэтому

. (2.110)

Из этого выражения следует, что при амплитудном управлении постоянная времени растет с уменьшением эффективного коэффициента сигнала, т. к. уменьшается величина пускового момента. При фазовом управлении и . Поэтому

. (2.111)

Следовательно, при этом способе управления постоянная времени не зависит от коэффициента сигнала . Это объясняется тем, что при фазовом управлении механические характеристики параллельны – при уменьшении коэффициента сигнала пропорционально ему уменьшается момент при пуске и скорость холостого хода. В результате время разгона не изменяется. При амплитудном же управлении уменьшение сигнала приводит к такому же уменьшению момента, но скорость холостого хода уменьшается в меньшей степени. Так, например, при коэффициенте сигнала пусковой момент в 2 раза меньше, чем при , а скорость холостого хода составляет 0,8 от скорости при . Естественно, что время разгона двигателя с уменьшением коэффициента сигнала растет.

Из выражений для постоянной времени следует, что она зависит от отношения и скорости . Она возрастает с увеличением момента и частоты питающей сети. При увеличении числа полюсов величина уменьшается. Двигатели, рассчитанные на работу при пониженной частоте, несмотря на то, что они обычно выполняются многополюсными, имеют большую постоянную времени, чем машины, рассчитанные на работу при частоте 50 Гц.