рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Заполнение зон электронами. Проводники, диэлектрики и полупроводники

Заполнение зон электронами. Проводники, диэлектрики и полупроводники - раздел Физика, Свойства пластически деформированных металлов Каждая Энергетическая Зона Содержит Ограниченное Число Энер­гетических Уровне...

Каждая энергетическая зона содержит ограниченное число энер­гетических уровней. В соответствии с принципом Паули на каждом уровне может разместиться не более двух электронов. При ограничен­ном числе электронов, содержащихся в твердом теле, заполненными окажутся лишь несколько наиболее низких энергетических зон. По характеру заполнения зон электронами все тела можно разде­лить на две большие группы.

К первой группе относятся тела, у которых над целиком заполнен­ными зонами располагается зона, заполненная лишь частично (рис. а). Такая зона возникает в том случае, когда атомный уро­вень, из которого она образуется, заполнен в атоме не полностью. Частично заполненная зона может образоваться вслед­ствие наложения заполненных зон на пустые или частично заполненные (рис. б). Наличие зоны, заполненной лишь частично, присуще металлам.

Ко второй группе относятся тела, у которых над целиком заполнен­ными зонами располагаются пустые зоны (рис. в, г). Типичным примером таких тел являются химические элементы IV группы табли­цы Менделеева — углерод в модификации алмаза, кремний, герма­ний и серое олово, имеющее структуру алмаза. К этой же группе тел относятся многие химические соединения — окислы металлов, нитри­ды, карбиды, галогениды щелочных металлов и т. д. Согласно зонной теории твердых тел, электроны внешних энерге­тических зон имеют практически одинаковую свободу движения во всех телах независимо от того, являются они металлами или диэлектриками. Движение осуществляется путем туннельного перехода электро­нов от атома к атому. Несмотря на это, электрические свойства этих тел, в частности удельная электропроводность, различаются у них на много порядков.

По ширине запрещенной зоны тела второй группы условно делят на диэлектрики и полупроводники. К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных ди­электриков Eg > 3 эВ. Так, у алмаза Eg — 5,2 эВ; у нитрида бора Eg - 4,6 эВ.

К полупроводникам относят тела, имеющие сравнительно узкую запрещенную зону (рис. г). У типичных полупроводников Eg < 1 эВ. Так, у германия Eg = 0,65 эВ; у кремния Eg = 1,08 эВ; у арсенида галлия Eg = 1,43 эВ

Диэлектрики:

Запрещенная зона Wg~5эВ; ρ=108÷1018Ом*м;

Металлы:

Запрещенная зона Wg=0; ρ=10-8÷10-6Ом*м;

Полупроводники:

Запрещенная зона Wg~1эВ; ρ=10-6÷107Ом*м;

Собственные полупроводники

Химически чистые полупроводни­ки называются собственными полупроводниками. К ним относится ряд чистых химических элементов (германий, кремний, селен, теллур и др.) и многие химические соединения, такие, например, как арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и т. д.

На рис. а показана упрощенная схема зонной структуры соб­ственного полупроводника. При абсолютном нуле его валентная зона укомплектована полностью, зона проводимости, расположенная над валентной зоной на расстоянии Eg является пустой. Поэтому при абсолютном нуле собственный полупроводник, как и диэлектрик, об­ладает нулевой проводимостью.


Однако с повышением температуры вследствие термического воз­буждения электронов валентной зоны часть из них приобретает энер­гию, достаточную для преодоления запрещенной зоны и перехода в зону проводимости (рис. б). Это приводит к появлению в зоне проводимости свободных электронов, а в валентной зоне - свободных уровней, на которые могут переходить электроны этой зоны. При при­ложении к такому кристаллу внешнего поля в нем возникает направленное движение электронов зоны проводимости и валентной зоны, приводящее к появлению электрического току. Кристалл становится проводящим.

Чем уже запрещенная зона и выше температура кристалла, тем больше электронов переходит в зону проводимости, поэтому тем более высокую электропроводность приобретает кристалл.

Из изложенного вытекают сле­дующие два важных вывода.

Проводимость полупровод­ников является проводимостью возбужденной: она появляется под действием внешнего фактора, способного сообщить электронам валентной зоны энергию, достаточную для переброса их в зону прово­димости. Такими факторами могут быть нагревание полупроводников, облучение их светом и ионизирующим излучением.

 

где σ – удельная проводимость;

ρ – удельное электрическое сопротивление;

 

n – концентрация носителей заряда;

q – величина заряда;

μ – подвижность носителей заряда;

 

Подвижность носителей заряда характеризует способность перемещаться под действием электрического поля.

В металлах n практически не меняется. В полупроводниках n зависит от температуры.

 
 


где k – постоянная Больцмана

T – абсолютная температура

 

 

Разделение тел на полупроводники и диэлектрики носит в значительной мере условный характер. Алмаз, являющийся диэлектриком при комнатной температуре, приобретает заметную проводимость при более высоких температурах и может считаться также полупроводни­ком. По мере того, как в качестве полупроводников начинают использоваться материалы со все более широкой запрещенной зоной, деление
тел на полупроводники и диэлектрики постепенно утрачивает свой
смысл.

В таблице приведены электрофизические свойства и характеристики зонной структуры трех типичных собствен­ных полупроводников при комнатной температуре — кремния, германия и антимонида индия.

 

Вещество Eg, эВ ρ, Ом×м μn,см2/В×с μp,см2/В×с γ, г/см3 M, г/моль
Ge (70÷800C) 0,66 0,8 5,3
Si (120÷1400C) 1,12 2,3

 

Из данных таблицы видно, что с уменьшением ширины запрещенной зоны резко возрастает концентрация свободных носителей заряда в полупроводнике и падает его удельное сопротивление.

 

Примесные полупроводники

Полупроводники любой степени чистоты содержат всегда примес­ные атомы, создающие свои собственные энергетические уровни, полу­чившие название примесных уровней. Эти уровни могут располагаться как в разрешенной, так и в запрещенной зонах полупроводника на различных расстояниях от вершины валентной зоны и дна зоны про­водимости. В ряде случаев примеси вводят сознательно для придания полупроводнику необходимых свойств. Рассмотрим основные типы примесных уровней.

Донорные уровни. Предположим, что в кристалле германия часть атомов германия замещена атомами пятивалентного мышьяка. Герма­ний имеет решетку типа алмаза, в которой каждый атом окружен четырьмя ближайшими соседями, связанными с ним валентными си­лами (рис. а). Для установления связи с этими соседями атом мышьяка расходует четыре валентных электрона; пятый электрон в образовании связи не участвует. Он продолжает двигаться в поле ато­ма мышьяка.

Вследствие ослабления поля радиус орбиты электрона увеличивается в 16 раз, а энергия связи его с ато­мом мышьяка уменьшается примерно в ε2 ≈ 256 раз, становясь равной Ед ≈ 0,01 эВ. При сообщении электрону такой энергии он отрывает­ся от атома и приобретает способность свободно перемещаться в решет­ке германия, превращаясь, таким образом, в электрон проводимости (рис. б).

На языке зонной теории этот процесс можно представить следую­щим образом. Между заполненной валентной зоной и свободной зо­ной проводимости располагаются энергетические уровни пятого элек­трона атомов мышьяка (рис. в). Эти уровни размещаются непо­средственно у дна зоны проводимости, отстоя от нее на расстоянии Eg ≈ 0,01 эВ. При сообщении электронам таких примесных уровней энергии Eg они переходят в зону проводимости (рис. г). Обра­зующиеся при этом положительные заряды («дырки») локализуются на неподвижных атомах мышьяка и в электропроводности не участвуют.

Примеси, являющиеся источником электронов проводимости, на­зываются донорами, а энергетические уровни этих примесей — донорными уровнями. Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками n-типа, часто их называют также донорными полупроводниками.

Акцепторные уровни. Предположим теперь, что в решетке герма­ния часть атомов германия замещена атомами трехвалентного индия (рис. а). Для образования связей с четырьмя ближайшими со­седями у атома индия не хватает одного электрона. Его можно «заим­ствовать» у атома германия. Для этого требует­ся энергия порядка Еа ≈ 0,01 эВ. Разорванная связь представляет собой дырку (рис. б), так как она отвечает образованию в валентной зоне германия вакантного состояния.

На рис. в показана зонная структура германия, содержащего примесь индия. Непосредственно у вершины валентной зоны на расстоянии Еа ≈ 0,01 эВ располагаются незаполненные уровни атомов индия. Близость этих уровней к валентной зоне приводит к тому, что уже при относительно невысоких температурах электроны из валент­ной зоны переходят на примесные уровни (рис. г). Связываясь с атомами индия, они теряют способность перемещаться в решетке гер­мания и в проводимости не участвуют. Носителями заряда являются лишь дырки, возникающие в валентной зоне.

Примеси, захватывающие электроны из валентной зоны полупро­водника, называют акцепторными, а энергетические уровни этих при­месей — акцепторными уровнями. Полупроводники, содержащие также примеси, называются дырочными полупроводниками, пли полупроводниками p-типа; часто их называют акцепторными полупроводниками.

Лекция 2

– Конец работы –

Эта тема принадлежит разделу:

Свойства пластически деформированных металлов

На сайте allrefs.net читайте: "Свойства пластически деформированных металлов"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Заполнение зон электронами. Проводники, диэлектрики и полупроводники

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лазарев Д. В.
  Уфа 2004 Оглавление Лекция 1_ 4 Заполнение зон электронами. Проводники, диэлектрики и полупроводники_ 4

Принципы работы полупроводниковых приборов и их применение
Диоды В пластине полупроводника, на границе между двумя слоями с различного рода электропроводностями, образуется электронно-дырочный переход, называе­мый также p-n

Люкс-амперная характери­стика фоторезистора
Фотоэлементы с p-n-переходом При освещении p-n-перехода в нем возникает э. д. с. Это явление исполь­зуется в фотоэлементах с запирающим слоем, которые могут служить

Упрощенная структура фотодиода и его ус­ловное графическое обозначение
  Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения между анодом и катодом при разомкнутой цепи.

Механические свойства материалов
  Из всех свойств, которыми обладают твердые тела, наиболее харак­терными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря э

Кривые растяжения материалов: а-хрупкого, б-пластичного
    По-разному

Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
   

Кристаллизация металлов
  Переход металла из жидкого или па­рообразного состояния в твердое с образованием кристаллической струк­туры называется первичной кристалли­зацией. Образование новых кристаллов в тве

Изменение термодинамического по­тенциала в зависимости от температуры для металла в твердом и жидком состояниях
  Температура, при которой термодина­мические потенциалы вещества в твер­дом и жидком состояниях равны, назы­вается равновесной температурой кри­сталлизации. Кристаллизация происхо­ди

Кривые охлаждения металла
  При боль­шом объеме жидкого металла выделяю­щаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме мет

Изменение термодинамического по­тенциала при образовании зародышей в за­висимости от их размера
  Если принять, что зародыш имеет форму куба с ребром А, то общее изме­нение термодинамического потенциала    

Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения
  Для металлов, которые в обычных ус­ловиях кристаллизации не склонны к большим переохлаждениям, как пра­вило, характерны восходящие ветви кривых. Это значит, что при равновес­ной тем

Схемы установок для выращивания монокристаллов
  Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из моно­кристалла по возможнос

Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
    Полиморфизм Ряду веществ

Влияние нагрева на структуру и свойства металлов
  Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе ста­дии сопровождаются выделением теп­лоты и уменьшением свободной энер­гии.

Схемы изменения твердости (а) и пластичности (6) наклепанного металла при нагреве: I - возврат; II - первичная рекристаллизация; III - рост зерна
    Рассмотренная стадия рекристаллиза­ции называется первичной рекристалли­зацией или рекристаллизацией обработ­ки. Первичная рекристаллизация з

Термическая обработка металлов и сплавов
Определения и классификация Термической обработкой называют технологические процессы, состоящие из нагрева и охлаждения металлических изделий с целью изменения их с

Термохимическая обработка
Назначение и виды химико-термической обработки Химико-термической обработкой называ­ется процесс поверхностного насыщения стали различ­ными элементами путем их дифф

Цементация в твердой среде
Карбюриза­тором является активированный древесный уголь (дубо­вый или березовый), а также каменноугольный полукокс и торфяной кокс. Для ускорения процесса к древесному углю добавляют активизаторы —

Газовая цементация
В настоящее время газовая цементация является основным процессом це­ментации на заводах массового производства. При газо­вой цементации сокращается длительность процесса, так как отпадает необходим

Центробежный шариковый наклёп
    Накатывание стальных шариков

Способы литья
Литье в землю Недостатки этого метода заключаются в том, что поверхность детали получается шероховатой, охлаждение детали происходит очень медленно, то есть произво

Снижение себестоимости
Перечисленные выше преимущества литья в кокиль приводят к снижению себестоимости отливок из цветных сплавов. Кроме того, при литье в кокиль облегчается очистка и обрубка литья, значительно

Высокая прочность
Благодаря быстрому охлаждению отливки приоб­ретают мелкозернистую структуру и повышенную прочность. Чем меньше толщина стенки отливки, тем больше ее прочность.   По сравнению

Конструкционные материалы
Общие требования, предъявляемые к конструкционным материалам Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­не

Компоненты и фазы в сплавах железа с углеродом
Железо и углерод — эле­менты полиморфные. Железо с температурой плавления 1539°С имеет две модификации - α и γ. Модификация Feα, существует при тем­пературах до 911°С и от

Влияние легирующих элементов на ме­ханические свойства сталей
Легирую­щие элементы вводят для повышения конструкционной прочности стали. Легированные стали производят каче­ственными, высококачественными или особовысококачественными. Их приме­няют после закалк

Цветные сплавы
Медные сплавы Свойства меди. Медь металл красновато-розового цвета; кристаллическая ГЦК решетка, поли­морфных превращений нет. Медь менее тугоп

Свойства промышленных латуней, обрабатываемых давлением
Латунь Массовая доля, % σв σ0,2 δ,% HB Cu

Механические свойства алюминия
Марка Сумма примесей, %   Состояние σв σ0,2 δ,%   &nb

Механические свойства иодидного и технического титана
Титан Сумма примесей, % σв σ0,2 δ Ψ HB

Органические полимеры
  Органическими называют обширный класс веществ, содер­жащих в своей основе углерод. Кроме углерода в этих вещест­вах содержится обычно водород, кислород, азот, сера, фосфор. Соединен

Неорганические материалы
  К неорганическим полимерным материалам относятся минераль­ное стекло, ситаллы, керамика и др. Этим материалам присущи негорючесть, высокая стойкость к нагреву, химическая сто

Кристаллическая решет­ка графита
  В узлах каждой ячейки располагаются атомы углерода. Межатомное расстояние равно 0,143 нм. Между атомами действуют силы прочной ковалентной связи. Отдельные плоскости расположены на

Керамика на основе чистых оксидов
В производстве оксидной керамики используют в основном следующие оксиды: А12О3 (ко­рунд), ZrO2, AlgO, CaO, BeO. Структура керамики однофазная поликристаллическая. К

Бескислородная керамика
К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом — карбиды, с бором — бориды, с азотом — нитриды, с кремнием — силициды и с серой — сульфиды. Эти соединения отлич

Композиционные материалы
Композиционные материалы с металлической матрицей Композиционные материалы состоят из металлической матрицы, упрочненной высокопрочными волокнами (волокнистые матер

Схемы армирования композиционных материалов: I - однонаправленная; II - двухнаправленная; III - трехнаправленная; IV - четырехнаправленная.
Укладка во­локон (1 - прямоугольная, 2 - гексаго­нальная, 3 - косоугольная, 4 - с искри­вленными волокнами, 5 - система из n ни­тей)   Карбоволокн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги