рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Газовая цементация

Газовая цементация - раздел Физика, Свойства пластически деформированных металлов В Настоящее Время Газовая Цементация Является Основным Процессом Це­ментации ...

В настоящее время газовая цементация является основным процессом це­ментации на заводах массового производства. При газо­вой цементации сокращается длительность процесса, так как отпадает необходимость прогрева ящиков, можно обеспечить более полную механизацию и автоматизацию процесса, упрощается последующая термическая обра­ботка и, самое главное, можно получить заданную кон­центрацию углерода в слое.

Цементацию выполняют в шахтных, муфельных или безмуфельных печах непрерывного действия. При цементации в шахтных печах для получения науглероживающей атмосферы применяют метан, керосин, синтин, бензол и т. д. В печах непрерывного действия чаще используют ме­тан. Для получения заданной концентрации углерода (обычно 0,8%) применяют атмосферы с регулируемым потенциалом углерода.

Под углеродным потенциалом атмосферы понимают определенную концентрацию углерода на поверхности цементованного слоя. Для ускорения процесса углерод­ный потенциал атмосферы в печи меняют по зонам. Вначале его поддерживают высоким, обеспечивающим полу­чение в поверхностном слое концентрации углерода 1,3— 1,4%, а затем его снижают для получения в этом слое оптимального содержания углерода (0,8%).

С этой целью в первую зону, занимающую примерно 2/3 длины печи, подают газ, состоящий из смеси природ­ного (10—15%) и эндотермического (90—85%) газов. Во вторую зону подают только эндотермический газ, на­ходящийся в равновесии с заданной концентрацией угле­рода (0,8%) на поверхности. При этом за счет диффузии углерода в глубь металла и взаимодействия поверхности детали с эндотермической атмосферой концентрация уг­лерода на поверхности уменьшается и происходит более равномерное его распределение по толщине цементован­ного слоя.

После газовой цементации применяют закалку (для наследственно мелкозернистых сталей) непосредственно из цементационной печи, предварительно сделав подстуживание до температуры 850—830°С. Заключительной операцией является низкотемпературный отпуск при тем­пературе 160—180° С.

Цианирование и нитроцементация

Цианированием называется процесс одновремен­ного насыщения поверхности деталей углеродом и азо­том.

На состав и свойства цианированного слоя особое влияние оказывает температура процесса. Повышение температуры цианирования ведет к увеличению содержа­ния углерода в слое, снижение температуры — к увеличе­нию содержания азота. Толщина цианированного слоя также зависит от температуры и продолжительности процесса.

Различают жидкое и газовое цианирование. Газовое цианирование еще называют нитроцементацией. Жидкое цианирование проводят в расплавленных солях, содержащих цианистый натрий.

Цианирование при температурах 820—850°С позволя­ет осуществлять закалку непосредственно из ванны. Пос­ле закалки следует низкотемпературный отпуск.

Цианирование при температурах 820—850°С позво­ляет получать слои толщиной 0,15-0,35 мм за 30-90 мин. Для получения слоев большой толщины (0,5-2,0 мм) применяют глубокое цианирование при темпера­турах 900-950° С, длительность 1,5-6,0 ч. Глубокое цианирование имеет ряд преимуществ по сравнению с це­ментацией: меньше продолжительность процесса для по­лучения слоя заданной толщины; меньше деформация и коробление; более высокое сопротивление износу и по­вышенная усталостная прочность.

После цианирования деталь охлаждают на воздухе, повторно нагревают для закалки и проводят низкотемпе­ратурный отпуск. Такая обработка необходима в связи с тем, что при температурах цианирования (900—950° С) сильно вырастает зерно аустенита и необходим повтор­ный нагрев для его измельчения. Структура цианирован­ного слоя после закалки такая же, как после цементации.

Недостатком цианирования является ядовитость циа­нистых солей. Поэтому цианирование проводят в специально выделенных помещениях с соблюдением мер предосторожности.

Нитроцементацию осуществляют при температурах 840—860°С в газовой смеси из науглероживающего газа и аммиака. Продолжительность процесса зависит от глу­бины насыщаемого слоя и составляет 1 —10 ч. Толщина слоя колеблется от 0,1 до 1,0 мм.

После нитроцементации изделия подвергают закалке и низкотемпературному отпуску при температуре 160— 180° С.

Низкотемпературное цианирование осуществляется при температурах 540—560°С в расплавленных циани­стых слоях. Низкотемпературному цианированию подвергают инструмент из быстрорежущих сталей для повышения его стойкости при резании. В результате такой обработки об­разуется нитроцементованный слой толщиной 0,02—0,04 мм. Длительность процес­са 1 —1,5 ч.

Азотирование

Азотированием называется процесс насыщения поверхности стали азотом. Процесс осуществляется в среде аммиака при температуре 480—650° С. При этих температурах выделяется атомарный азот, который диффундирует в поверхностные слои детали.

Для азотирования применяют среднеуглеродистые легированные стали. При азотировании легированных сталей азот образу­ет с легирующими элементами устойчивые нитриды, ко­торые придают азотированному слою высокую твердость.

Перед азотированием детали подвергают термиче­ской обработке, состоящей из закалки и высокотемпературного отпуска. Затем производят механи­ческую обработку, придающую окончательные размеры изделию.

Участки, не подлежащие азотированию, защищают тонким слоем (0,001—0,015 мм) олова, нанесенным электролитическим методом, или жидким стеклом. В про­цессе азотирования олово расплавляется и благодаря поверхностному натяжению удерживается на поверхно­сти стали в виде тонкой непроницаемой для азота пленки. Продолжительность процесса зависит от толщины слоя. Обычно процесс азотирования ведут при температу­рах 500—520° С. В этом случае получают слои толщиной до 0,5 мм за 24—90 ч.

Для ускорения процесса азотирования применяют двухступенчатый цикл. Вначале азотирование ведут при 500—520°С, а затем температуру повышают до 580—600° С. Это ускоряет процесс в 1,5—2 раза при сохранении высокой твердости азотированного слоя.

В процессе азотирования изменяются размеры дета­лей за счет увеличения объема поверхностного слоя. Чем выше температура процесса и больше толщина азотиро­ванного слоя, тем больше изменение размеров деталей.

Для повышения коррозионной устойчивости изделий азотирование проводят при температуре 600—700°С в течение 15 мин. для мелких деталей и 6—10 ч. для круп­ных деталей.

Процесс жидкостного азотирования осу­ществляют при температуре 570°С в расплаве циансодержащих солей. В ходе процесса расплав непре­рывно продувается сухим и чистым воздухом, что обеспечивает превраще­ния цианида в цианат, являю­щийся поставщиком атомов углерода и азота.

Преимуществом жидкостного азотирования является резкое сокраще­ние времени получения насыщенного слоя по сравнению с газовым азо­тированием (слой толщиной 0,10-0,20 мм получают за 1,5-3 ч). Кроме того, отсутствие водорода в среде способствует
повышению вязкости слоя. Недостатком процесса является применение ядо­витых солей.

Широкое применение получает ионное азо­тирование. По сравне­нию с газовым азотированием оно имеет ряд преимуществ: меньшую продолжительность процесса, более высокое качество азотированного слоя, пониженную хрупкость слоя.

Диффузионная металлизация

Диффузионная металлизация - это про­цесс диффузионного насыщения поверхностных слоев стали различными металлами. Она может осуществлять­ся в твердых, жидких и газообразных средах.

При диффузионной металлизации в твердых средах применяют порошкообразные смеси, состоящие обычно из ферросплавов с добавлением хлористого аммония.

Жидкая диффузионная металлизация осуществляет­ся погружением детали в расплавленный металл (например, цинк, алюминий).

При газовом способе насыщения применяют летучие хлористые соединения металлов, образующиеся при взаимодействии хлора с ме­таллами при высоких температурах. Хлориды диссоциируют на поверхности железа и вы­деляющийся в атомарном состоянии металл диффунди­рует в железо.

Диффузия металлов в железе идет значительно мед­леннее, чем углерода и азота, потому что углерод и азот образуют с железом твердые растворы внедрения, а ме­таллы - твердые растворы замещения. Это приводит к тому, что диффузионные слои при металлизации полу­чаются в десятки раз более тонкими. Поверхностное насыщение стали металлами прово­дится при температурах 900—1200° С.

 

Алитирование (Al)

Алитированием называется процесс насыщения поверхности стали алюминием. В результате алитирования сталь приобретает высокую окалиностойкость (до850—900° С) и коррозионную стойкость в атмосфере и в ряде сред.

При алитировании в порошкообразных смесях чис­тые детали вместе со смесью упаковывают в железный ящик. В рабочую смесь входят: порошковый алюминий (25—50%) или ферроалюминий (50—75%), окись алю­миния (25—50%) и хлористый алюминий (~1,0%). Процесс осуществляется при температуре 900—1000°С в течение 3—12 ч.

Реже применяют алитирование в ваннах с расплав­ленным алюминием. Алитируемые детали погружают в расплавленный алюминий (92—94% А1 и 6—8% Fe). Железо добавляют для того, чтобы предотвратить рас­творение обрабатываемых деталей в алюминии. Процесс проводят при температурах 700—800°С в течение 45— 90 мин.

Алитирование в расплавленном алюминии отлича­ется от алитирования в порошкообразных смесях прос­тотой метода, быстротой и более низкими температура­ми. Основной недостаток процесса — налипание алюми­ния на поверхность деталей.

Иногда применяют металлизацию поверхности стали алюминием (напыление слоя алюминия на обрабатыва­емую поверхность) с последующим диффузионным от­жигом при температуре 900—1000°С в течение 1—3 ч.

Для предохранения алюминия от окисления во время диффузионного отжига изделие покрывают обмазкой, состоящей из серебристого графита (48%), кварцевого песка (30%), глины (20%), хлористого алюминия(2%) и 20—25% от массы первых четырех составляющих - жидкого стекла.

Алитирование стали металлизацией с последующим диффузионным отжигом в несколько раз дешевле, чем в порошках. Агитированный слой представляет собой твердый раствор алюминия в железе, концентрация алюминия в поверхностном слое достигает 30-40%. Алитированию подвергают трубы, инструмент для литья цветных сплавов, чехлы термопар, детали газоге­нераторных машин и т. д.

Хромирование (Cr)

Хромирование (поверхностное насыщение хро­мом) проводят для повышения коррозионной стойкости, кислостостойкости, окалиностойкости (до 850° С) и т. д. Хромирование средне- и высокоуглеродистых сталей по­вышает твердость и износостойкость.

Хромирование чаще всего проводят в порошкообраз­ных смесях (50% металлического хрома или феррохро­ма, 49% окиси алюминия и 1% хлористого аммония). Процесс осуществляется при температуре 1000—1050°С. Диффузионный слой, получаемый при хромировании уг­леродистых сталей, состоит из карбидов хрома. Толщина хромированного слоя достигает 0,15—0,20 мм при длительности процес­са 6—15 ч. Чем больше углерода в стали, тем меньше толщина слоя.

Значительно реже применяется газовое хромирова­ние. Процесс проводят в среде, содержащей пары CrCl2. Пары CrCl2 получают пропусканием осушенных Н2 и НС1 через феррохром или хром при температуре 980°С. За 3-5 ч получают слой толщиной 0,06-0,10 мм.

Иногда применяют хромирование в вакууме. Изде­лия засыпают кусочками (диаметром 1—3 мм) хрома в стальном или керамическом тигле и помещают в ваку­умную печь. При высокой температуре (960—1000° С) хром испаряется и диффундирует в сталь.

Хромирование применяют для пароводяной армату­ры, клапанов, вентилей, а также деталей, работающих в агрессивных средах.

Борирование (B)

Борированием называется насыщение стали бо­ром. Борирование проводят с целью повышения стой­кости против абразивного износа. Толщина борированных слоев не превышает 0,3 мм.

Широкое распространение получил метод электро­лизного борирования в расплавленных солях, содержа­щих бор. Деталь служит катодом в ванне с расплавлен­ной бурой. Температура процесса 900—950° С. Процесс можно вести и без электролиза в ваннах с рас­плавленными хлористыми солями, в ко­торые добавляют порошкообразный ферробор или кар­бид бора.

Применяют также и метод газового борирования. В этом случае насыщение бором проводят в среде диборана в смеси с водородом при температуре 850—900° С.

Борированию подвергают втулки грязевых нефтяных насосов, штамповый инструмент и т. д.

Силицирование (Si)

Силицированием называется процесс насыще­ния поверхности стали кремнием. В результате силицирования сталь приобретает высокую коррозионную стой­кость в морской воде, в различных кислотах и повышен­ную износостойкость. Кроме того, силицирование резко повышает окалиностойкость молибдена и некоторых других металлов и сплавов.

Силицированный слой представляет собой твердый раствор кремния в α-железе. Силицированный слой не­смотря на низкую твердость и значитель­ную пористость после пропитки маслом при температуре 170—200° С имеет повышенную износостойкость.

Силицирование можно проводить в порошкообраз­ных смесях, состоящих из 60% ферросилиция, 39% оки­си алюминия и 1 % хлористого аммония, но наиболее часто применяют газовое силицирование. При газовом силицировании при температуре 1000°С в течение 2—4 ч образуется слой толщиной 0,5—1,0 мм.

Силицированию подвергают детали, применяемые в оборудовании химической, бумажной и нефтяной про­мышленности.

В последние годы разработаны и получают промыш­ленное внедрение новые процессы поверхностного насы­щения металлов — титанирование и цинкование.

Поверхностно-пластическая деформация

– Конец работы –

Эта тема принадлежит разделу:

Свойства пластически деформированных металлов

На сайте allrefs.net читайте: "Свойства пластически деформированных металлов"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Газовая цементация

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лазарев Д. В.
  Уфа 2004 Оглавление Лекция 1_ 4 Заполнение зон электронами. Проводники, диэлектрики и полупроводники_ 4

Заполнение зон электронами. Проводники, диэлектрики и полупроводники
Каждая энергетическая зона содержит ограниченное число энер­гетических уровней. В соответствии с принципом Паули на каждом уровне может разместиться не более двух электронов. При ограничен­ном числ

Принципы работы полупроводниковых приборов и их применение
Диоды В пластине полупроводника, на границе между двумя слоями с различного рода электропроводностями, образуется электронно-дырочный переход, называе­мый также p-n

Люкс-амперная характери­стика фоторезистора
Фотоэлементы с p-n-переходом При освещении p-n-перехода в нем возникает э. д. с. Это явление исполь­зуется в фотоэлементах с запирающим слоем, которые могут служить

Упрощенная структура фотодиода и его ус­ловное графическое обозначение
  Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения между анодом и катодом при разомкнутой цепи.

Механические свойства материалов
  Из всех свойств, которыми обладают твердые тела, наиболее харак­терными являются механические свойства — прочность, твердость, пластичность, износостойкость и др. Именно благодаря э

Кривые растяжения материалов: а-хрупкого, б-пластичного
    По-разному

Твёрдость материала по Бринелю рассчитывают исходя из площади отпечатка.
   

Кристаллизация металлов
  Переход металла из жидкого или па­рообразного состояния в твердое с образованием кристаллической струк­туры называется первичной кристалли­зацией. Образование новых кристаллов в тве

Изменение термодинамического по­тенциала в зависимости от температуры для металла в твердом и жидком состояниях
  Температура, при которой термодина­мические потенциалы вещества в твер­дом и жидком состояниях равны, назы­вается равновесной температурой кри­сталлизации. Кристаллизация происхо­ди

Кривые охлаждения металла
  При боль­шом объеме жидкого металла выделяю­щаяся при кристаллизации теплота повышает температуру практически до равновесной (кривая а); при малом объеме мет

Изменение термодинамического по­тенциала при образовании зародышей в за­висимости от их размера
  Если принять, что зародыш имеет форму куба с ребром А, то общее изме­нение термодинамического потенциала    

Изменение скорости образования зародышей (с. з.) и скорости роста кристаллов (с. р.) в зависимости от степени переохлаждения
  Для металлов, которые в обычных ус­ловиях кристаллизации не склонны к большим переохлаждениям, как пра­вило, характерны восходящие ветви кривых. Это значит, что при равновес­ной тем

Схемы установок для выращивания монокристаллов
  Метод Чохральского (рис. б) состоит в вытягивании монокристалла из расплава. Для этого используется готовая затравка 2 - небольшой образец, вырезанный из моно­кристалла по возможнос

Термодинамическое обоснование диаграммы состояния сплавов, компоненты которых полностью растворимы в жидком и твердом состояниях
    Полиморфизм Ряду веществ

Влияние нагрева на структуру и свойства металлов
  Процессы, происходящие при нагреве, подразделяют на две основные стадии: возврат и рекристаллизацию; обе ста­дии сопровождаются выделением теп­лоты и уменьшением свободной энер­гии.

Схемы изменения твердости (а) и пластичности (6) наклепанного металла при нагреве: I - возврат; II - первичная рекристаллизация; III - рост зерна
    Рассмотренная стадия рекристаллиза­ции называется первичной рекристалли­зацией или рекристаллизацией обработ­ки. Первичная рекристаллизация з

Термическая обработка металлов и сплавов
Определения и классификация Термической обработкой называют технологические процессы, состоящие из нагрева и охлаждения металлических изделий с целью изменения их с

Термохимическая обработка
Назначение и виды химико-термической обработки Химико-термической обработкой называ­ется процесс поверхностного насыщения стали различ­ными элементами путем их дифф

Цементация в твердой среде
Карбюриза­тором является активированный древесный уголь (дубо­вый или березовый), а также каменноугольный полукокс и торфяной кокс. Для ускорения процесса к древесному углю добавляют активизаторы —

Центробежный шариковый наклёп
    Накатывание стальных шариков

Способы литья
Литье в землю Недостатки этого метода заключаются в том, что поверхность детали получается шероховатой, охлаждение детали происходит очень медленно, то есть произво

Снижение себестоимости
Перечисленные выше преимущества литья в кокиль приводят к снижению себестоимости отливок из цветных сплавов. Кроме того, при литье в кокиль облегчается очистка и обрубка литья, значительно

Высокая прочность
Благодаря быстрому охлаждению отливки приоб­ретают мелкозернистую структуру и повышенную прочность. Чем меньше толщина стенки отливки, тем больше ее прочность.   По сравнению

Конструкционные материалы
Общие требования, предъявляемые к конструкционным материалам Конструкционными называют мате­риалы, предназначенные для изготовления деталей машин, приборов, инже­не

Компоненты и фазы в сплавах железа с углеродом
Железо и углерод — эле­менты полиморфные. Железо с температурой плавления 1539°С имеет две модификации - α и γ. Модификация Feα, существует при тем­пературах до 911°С и от

Влияние легирующих элементов на ме­ханические свойства сталей
Легирую­щие элементы вводят для повышения конструкционной прочности стали. Легированные стали производят каче­ственными, высококачественными или особовысококачественными. Их приме­няют после закалк

Цветные сплавы
Медные сплавы Свойства меди. Медь металл красновато-розового цвета; кристаллическая ГЦК решетка, поли­морфных превращений нет. Медь менее тугоп

Свойства промышленных латуней, обрабатываемых давлением
Латунь Массовая доля, % σв σ0,2 δ,% HB Cu

Механические свойства алюминия
Марка Сумма примесей, %   Состояние σв σ0,2 δ,%   &nb

Механические свойства иодидного и технического титана
Титан Сумма примесей, % σв σ0,2 δ Ψ HB

Органические полимеры
  Органическими называют обширный класс веществ, содер­жащих в своей основе углерод. Кроме углерода в этих вещест­вах содержится обычно водород, кислород, азот, сера, фосфор. Соединен

Неорганические материалы
  К неорганическим полимерным материалам относятся минераль­ное стекло, ситаллы, керамика и др. Этим материалам присущи негорючесть, высокая стойкость к нагреву, химическая сто

Кристаллическая решет­ка графита
  В узлах каждой ячейки располагаются атомы углерода. Межатомное расстояние равно 0,143 нм. Между атомами действуют силы прочной ковалентной связи. Отдельные плоскости расположены на

Керамика на основе чистых оксидов
В производстве оксидной керамики используют в основном следующие оксиды: А12О3 (ко­рунд), ZrO2, AlgO, CaO, BeO. Структура керамики однофазная поликристаллическая. К

Бескислородная керамика
К тугоплавким бескислородным соединениям относятся соединения элементов с углеродом — карбиды, с бором — бориды, с азотом — нитриды, с кремнием — силициды и с серой — сульфиды. Эти соединения отлич

Композиционные материалы
Композиционные материалы с металлической матрицей Композиционные материалы состоят из металлической матрицы, упрочненной высокопрочными волокнами (волокнистые матер

Схемы армирования композиционных материалов: I - однонаправленная; II - двухнаправленная; III - трехнаправленная; IV - четырехнаправленная.
Укладка во­локон (1 - прямоугольная, 2 - гексаго­нальная, 3 - косоугольная, 4 - с искри­вленными волокнами, 5 - система из n ни­тей)   Карбоволокн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги