Л 4. Элементы волновой оптики (дифракция света).

 

4.1. Основные определения и понятия.

 

1.(НТ1). (З).

Дифракция – это:

*D) Интерференция от большого числа источников когерентных волн.

Неверными ответами являются: D.

 

2.(НТ1). (З).

Колебания, возбуждаемые в точке наблюдения двумя соседними зонами Френеля сдвинуты по фазе на:

 

3. (НТ1). (З).

Плоская и сферическая волна, распространяющаяся от точечного источника S0, встречает на своем пути круглый непрозрачный диск. В центре дифракционной картины в этих случаях будет наблюдаться:

*В) В обоих случаях (светлое пятно).

4. (НТ1).(З).

5. Круглая диафрагма открывает четыре зоны Френеля. В точке наблюдения при этом наблюдается:

*А) темное пятно;

5. (НT1). (З).

На экран падает параллельный пучок света интенсивностью I0. Если на пути пучка поставить экран с круглым отверстием, который выделит только первую зону Френеля, то интенсивность света в центре экрана будет равна:

*B. 4I0

 

6. (НT1). (З).

На круглом отверстии в непрозрачном экране укладывается 5 зон Френеля. Разность фаз между колебаниями, пришедшими в точку наблюдения, расположенную на перпендикуляре, восстановленном из центра отверстия, от 1-ой и 3-ей зон Френеля, равна:

*А) 2p;

7. (НT1).(З).

На диафрагму с круглым отверстием падает нормально монохроматический свет с длиной волны l. Диаметр отверстия соизмерим с длиной волны. На фронте волны, вырезаемом отверстием, укладывается 5 зон Френеля для точки наблюдения М. Если закрыть чётные зоны специальным экраном, то интенсивность в точке М :

*A) увеличится

 

8. (НТ1). (З).

Зона Френеля это:

А) Круговое кольцо (кроме 1-ой зоны) плоской или сферической волновой поверхности, осесимметричное к перпендикуляру, восстановленному из центра кольца, разность фаз элементарных волн от границ которого в произвольной точке наблюдения, находящейся на этом перпендикуляре, равна .

С) Совокупность элементарных площадок (излучателей) на открытом для дальнейшего распространения участке волновой поверхности, разность фаз волн от которых, пришедших в избранную точку наблюдения лежит в пределах .

D) Совокупность элементарных площадок (излучателей) на волновой поверхности внутри круглого отверстия в экране, разность фаз волн от которых, пришедших в избранную точку наблюдения лежит в пределах .

Неверными ответами являются : А, С, D.

 

9. (НТ1). (З).

Дифракция Фраунгофера от одной щелеобразной диафрагмы наблюдается:

*В) на большом расстоянии, на котором лучи от разных участков щели, приходящие в точку наблюдения можно считать параллельными, а также на других расстояниях с помощью линзы;

10. (НТ2). (З).

Число открытых зон Френеля на круглом отверстии радиуса в экране для точки наблюдения сигнала, находящейся на расстоянии на перпендикуляре, восстановленном из центра отверстия, равно:

 

11. (НТ1). (З).

Векторная диаграмма, описывающая изменение амплитуды волны с интенсивностью , в точке наблюдения при постепенном открытии зон Френеля, имеет вид:

*В) свертывающейся спирали с начальной амплитудой ;

12. (НТ1). (З).

Чтобы найти количество зон Френеля (Шустера), укладывающихся на щели, от которой получается дифракционная картина на экране, расположенном в фокальной плоскости линзы, достаточно знать только:

A. *ни одно из этих условий не позволяет найти количество зон Френеля.

 

13. (НT1).(З).

На пути пучка стоит экран с круглым отверстием, который вырезает 7 зон Френеля для точки наблюдения М. Если закрыть 2, 4 и 6 зоны, то интенсивность света в точке М:

*А) увеличится;

 

14. (НT1).(З).

На пути пучка стоит экран с круглым отверстием, который вырезает 7 зон Френеля для точки наблюдения М. Если закрыть 2 – 7 зоны, интенсивность света в точке М:

А)*увеличится;

 

15 (НT1). (З).

На пути пучка стоит экран с круглым отверстием, которое вырезает 7 зон Френеля для точки наблюдения М. Если закрыть 1 - 6 зоны, интенсивность света в точке М:

*В)уменьшится

16. (НТ1).(З).

Колебания, приходящие в точку М от двух краёв соседних зон Френеля отличаются на фазу, равную:

*В) π

 

17. (НТ1).(З).

Диафрагма открывает три зоны Френеля. Если закрыть вторую зону, то амплитуда колебаний в точке наблюдения:

*А)*Увеличится в 2 раза

1.(НТ1).(З).

Диафрагма открывает три зоны Френеля. Интенсивность колебаний в точке наблюдения, если изменить фазу колебаний во второй зоне Френеля на π:

*С) увеличится в девять раз;

 

2. (НT2). (З).

Точечный источник света с длиной волны λ расположен на большом расстоянии от непрозрачной преграды с отверстием радиуса R. Число открытых зон Френеля на отверстии для точки наблюдения, находящейся на расстоянии L от преграды, равно:

*B. R2 / λL

 

3. (НТ2).(З).

В методе зон Френеля утверждается, что в точке наблюдения амплитуда волн от каждой последующей зоны меньше, чем от предыдущей. Главной физической причиной этого является:

*С) Рост расстояния от выбранной точки наблюдения до зоны.

 

4. (НТ1).(З).

Различают два вида дифракции – Фраунгофера и Френеля. Если - масштаб резкой неоднородности для волн, - длина волны, - расстояние от неоднородности до точки наблюдения, то дифракция Фраунгофера наблюдается при:

 

5. (НТ1).(З).

Различают два вида дифракции – Фраунгофера и Френеля. Если - масштаб резкой неоднородности для волн, - длина волны, - расстояние от неоднородности до точки наблюдения, то дифракция Френеля наблюдается при:

 

6 . (НТ1).(З).

Различают два вида дифракции – Фраунгофера и Френеля. Если - масштаб резкой неоднородности для волн, - длина волны, - расстояние от неоднородности до точки наблюдения, то дифракцией обычно можно пренебречь при:

 

7. (НТ1).(З).

Дифракция Фраунгофера имеет место при , где - масштаб неоднородности среды для волн, - длина волны, - расстояние от неоднородности до точки наблюдения. Условие вытекает из требования, чтобы

*D) лучи от разных участков неоднородности можно было считать практически параллельными.

8. (НТ1).(З).На рис приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. А0 – амплитуда волнового поля в точке при свободном распространении волны, - интенсивность. Отрезок СО равен:

 

9. (НТ1).(З).На рис. приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. А0 – амплитуда волнового поля, - интенсивность. Открыта треть первой зоны Френеля. Отношение интенсивности в точке наблюдения к интенсивности волны ,падающей на экран , равно:

*В) 1

 

 

10. (НТ2).(З).

На рис. приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. А0 – амплитуда волнового поля, - интенсивность. Открыта половина первой зоны Френеля. Отношение интенсивности в точке наблюдения к интенсивности волны ,падающей на экран , равно:

*С) 2

 

 

11. (НТ1). (З).

На рис. приведена векторная диаграмма изменения амплитуды колебаний в точке наблюдения волны при постепенном открытии зон Френеля. А0 – амплитуда волнового поля, - интенсивность. Отношение амплитуды в точке наблюдения к амплитуде плоской волны, падающей на экран , с диафрагмой, открывающей зоны Френеля приблизительно равно:

 

12. (НТ2).(З).

При дифракции Фраунгофера на щели размером «а» условия максимумов и минимумов интенсивности имеют вид ( - угол между нормалью к плоскости щели и направлением лучей, ):

*А), кроме максимума нулевого порядка при ;

13. (НТ2).(З).

При дифракции Фраунгофера на щели шириной «а» максимальное число максимумов, которые могут наблюдаться на приемном экране определяется из условий: