Пластическая деформация

Согнем немного стальную пластинку (например, ножовку), а затем через некоторое время отпустим ее. Мы увидим, что ножовка полностью (во всяком случае на взгляд) восстановит свою форму. Если возьмем такого же размера свинцовую пластинку и на такое же время согнем ее, то она не восстановит свою форму полностью и останется согнутой. Деформации, которые полностью исчезают, как только исчезают деформирующие силы, как у стальной пластинки, называют упругими. Деформации, которые не исчезают по снятии деформирующих сил, как у свинцовой пластинки, называют пластическими.

Строго говоря, не наблюдается ни вполне упругих, ни вполне пластических деформаций. Если стальную пластинку продержать в согнутом состоянии очень долго (например, несколько лет), то по снятии деформирующих сил она не разогнется полностью. Получится остаточная деформация, которая будет тем значительнее, чем дольше пластинка была в деформированном состоянии.

Итак, упругая деформация у всех тел с течением времени переходит в пластическую.

Вещества, у которых упругая деформация в заметной мере переходит в пластическую лишь в течение длительного времени (годы!), называют упругими веществами. Примерами упругих веществ являются сталь, стекло. Вещества, у которых упругая деформация в заметной мере переходит в пластическую в течение короткого времени (секунды, доли секунды), называют пластичными веществами. Примеры: свинец, воск и т. п. Однако если промежуток времени будет слишком мал, то деформация и в пластичном веществе не успеет перейти в пластическую. Например, при очень кратковременной деформации свинцовая пластинка может повести себя так же, как и стальная.

Переход упругой деформации в пластическую зависит еще и от самой деформации. Чем больше деформация, тем меньший промежуток времени требуется для ее перехода в пластическую. Увеличивая деформацию какого-нибудь тела, мы дойдем, наконец, до такой деформации, при которой переход из упругой в пластическую происходит практически мгновенно. Мы говорим в таком случае, что достигли предела упругости. У упругих веществ предел упругости велик, а у пластичных веществ он мал. Заметим, что предел упругости зависит от температуры. Чем выше температура, тем ниже предел упругости у данного вещества.

 

За́мкнутая систе́ма представляет собой систему, в которой отсутствует обмен веществом, энергией и информацией с внешней средой или окружением. Это отличает замкнутую систему от изолированной системы, где допускается обмен информацией, и также от закрытой системы, где возможен обмен энергией. С точки зрения теории бесконечной вложенности материи представление о замкнутой системе является идеализацией, поскольку экранировать любую систему от внешних воздействий одновременно на всех уровнях материи невозможно.

В философии носителей, в которой с помощью синкретной логики выводятся законы философии, связанные с системами, замкнутая система появляется как результат рассмотрения обмена между системами потоками вещества, энергии и информации. [1]

Замкнутая система в механике может быть определена как такая система тел, на которую не действуют внешние силы, либо действия этих внешних сил на тела системы полностью скомпенсированы.

Понятие замкнутой системы используется в лоренц-инвариантной термодинамике, в которой некоторые термодинамические величины определяются через напряжённости, плотности энергии и потоки энергии электромагнитного и гравитационного полей, [2] а также представлены в виде тензоров.