Фазы напряженно-деформированного состояния грунта

Фазы напряженно-деформированного состояния грунтаизучаются с целью установления расчетных моделей деформирования грунтового основания, приемлемых для инженерных расчетов его прочности, устойчивости, сжимаемости, горизонтальных и угловых перемещений. В связи с этой проблемой традиционно рассматривается график
(рис. 4.1) испытания грунтового основания штампом, изображающий зависимость осадки штампа от средних напряжений, действующих по его подошве.

 

 

Рис. 4.1. Фазы напряженно-деформированного состояния грунта:
Рстр – структурная прочность; начРкр – начальное критическое давление; предРкр – предельное критическое давление; R – расчетное сопротивление грунта; 0 – фаза упругой работы; I – фаза уплотнения; II – фаза сдвигов; III – фаза выпоров; 1 – основание в допредельном
состоянии; 2 – зоны сдвигов; 3 – линии скольжения; 4 – зоны выпоров

 

Предполагается, что в этом опыте отсутствует избыточное (по сравнению с атмосферным) поровое давление. Такие опыты называются опытами по дренированно-консолидированной схеме, а получаемые в таких опытах осадки называются стабилизированными (конечными). Предполагается также, что скорость нагружения в опыте достаточно мала, в результате чего деформации ползучести скелета грунта, если они имеют место при данном уровне нагружения, в основном успевают проявиться. По этой причине скорость нагружения в таких опытах регламентируется стандартами. Например, в штамповых опытах устанавливается (в общем случае, субъективный) критерий стабилизации осадки 0,01 мм за 2 часа. Анализ стабилизированных графиков испытания основания штампом позволяет выделить следующие фазы напряженно-деформированного состояния грунта: 0 – фаза упругих деформаций; I – фаза уплотнения; II – фаза сдвигов; III – фаза выпора. Кратко охарактеризуем напряженно-деформированное состояние грунта в каждой из выделенных фаз.

Фаза упругих деформацийхарактеризуется уровнем напряжений в скелете грунта, не превышающим прочность структурных связей между минеральными частицами грунта или, что то же самое, структурной прочности грунта. Деформации грунта в этой фазе обратимы и пренебрежимо малы, т. к. обусловлены сжимаемостью минеральных частиц. Уровень напряжений, соответствующий концу этой фазы, называется структурной прочностью грунта Рстр и обычно не превышает 5 – 10 % допустимых на грунт давлений.

Фаза уплотнениясоответствует уровням напряжений в грунте, в диапазоне которых процесс его деформирования удовлетворительно подчиняется закону уплотнения Терцаги. Линейная зависимость между деформациями и напряжениями в этой фазе не является обратимой. При разгрузке штампа из диапазона давлений, соответствующего фазе уплотнения, грунт деформируется по линейной зависимости, не совпадающей с ветвью нагрузки. При полной разгрузке штампа имеет место необратимая (пластическая) осадка, соответствующая нулевым напряжениям по подошве. Повторное нагружение штампа до уровня напряжений, достигнутых перед разгрузкой, происходит по графику, совпадающему с графиком разгрузки. Нагружение выше этого уровня происходит по закону первичной нагрузки. Таким образом, закон уплотнения Терцаги устанавливает линейную зависимость между напряжением и суммой упругой и пластической деформации грунта. Указанная особенность закона уплотнения формулируется как принцип линейной деформируемости:при простом нагружении грунта в фазе его уплотнения сумма упругой и пластической деформаций линейно зависит от действующего напряжения. Коэффициентом пропорциональности в этой линейной зависимости является модуль деформации грунта Е, названный так в отличие от модуля упругости, характеризующего деформацию упругого тела. Модуль упругости грунта Еа определяется по графику разгрузки и является коэффициентом пропорциональности между упругой деформацией грунта и действующим напряжением. Модуль деформации используется в статических расчетах, а модуль упругости – в динамических расчетах грунтовых оснований.

Фаза сдвиговхарактеризует начало образования в грунте зон предельного равновесия. Зоной предельного равновесия в грунте называют геометрическое место точек, в которых не удовлетворяются условия прочности Кулона-Мора. Первоначально эти зоны образуются по краям штампа, где имеет место концентрация напряжений. Разрушение грунта сопровождается большими сдвиговыми деформациями, что нашло отражение в названии рассматриваемой фазы напряженно-деформированного состояния грунта. Уплотнение грунта в этой фазе практически не происходит. Грунт считается несжимаемым, а коэффициент Пуассона в этой фазе близок к 0,5. Давление на грунт, соответствующее началу фазы сдвигов, называют начальным критическим давлением –начРкр.

Фаза выпораявляется следствием развития фазы сдвигов в области грунтового массива, являющегося основанием штампа, с образованием поверхностей скольжения, отделяющих основание штампа от нижележащего грунтового массива. В результате этого осадки штампа происходят без увеличения нагрузки за счет перемещения грунта основания из-под штампа по плоскостям скольжения с выходом на поверхность грунтового массива. При этом вокруг штампа происходит поднятие (выпор) грунта, что нашло отражение в названии этой фазы. Непосредственно под штампом в фазе выпора образуется коническая переуплотненная зона, называемая ядром жесткости. Прочность этой зоны обусловлена боковыми давлениями со стороны окружающего грунта, находящегося в состоянии пластического течения. Как известно, коэффициент бокового давления в грунте в состоянии пластического течения стремится к единице. Таким образом, жесткое ядро находится до исчерпания несущей способности основания в состоянии компрессионного сжатия, близкого к трехосному сжатию, что и определяет его высокую прочность. В зонах пластического течения недоуплотненные грунты получают дополнительное уплотнение, а переуплотненные – разуплотняются. Это явление называется дилатансией. Давление, при котором наступает фаза выпора, называется предельным критическим давлениемпред Ркр.

В соответствии с охарактеризованными выше фазами напряженно-деформированного состояния грунта применяются следующие его расчетные модели, таблица 4.1.

 

Таблица 4.1

 

Расчетные модели грунта в соответствии с фазами напряженно-деформированного состояния

 

Уровень напряжений Р Расчетная модель Характеристики модели Методы анализа
Р Рстр Упругая среда Модуль упругости Теория упругости
Рстр < Р <начРкр Линейно-деформируемая неупругая среда Модуль деформации при нагрузке и модуль упругости при разгрузке Теория упругости анизотропной среды
начРкрР < предРкр Упругопластическая среда Функциональная зависимость деформаций от напряжений Теория пластичности
Р предРкр Дилатирующая среда Модули дилатансии (дилатации и контракции) Дилатансионная теория