Законы сохранения в механике

Законы сохранения в механике

Закон сохранения импульса. Реактивное движение

  В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел…   Этот фундаментальный закон природы называется законом сохранения импульса. Он является следствием из второго и…

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение.

При стрельбе из орудия возникает отдача – снаряд движется вперед, а орудие – откатывается назад. Снаряд и орудие – два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс (рис. 1.17.2). Если скорости орудия и снаряда обозначить через и а их массы через M и m, то на основании закона сохранения импульса можно записать в проекциях на ось OX

 

Рисунок 1.17.2. Отдача при выстреле из орудия.

На принципе отдачи основано реактивное движение. В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m, а массу ракеты после истечения газов через M. Тогда для замкнутой системы «ракета + газы» можно записать на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия):

где V – скорость ракеты после истечения газов.

Здесь предполагалось, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно. На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью (рис. 1.17.3 (1)). В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM, где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна –ΔM > 0. Скорость газов в инерциальной системе OX будет равна Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен а импульс испущенных газов равен В момент времени t импульс всей системы был равен Предполагая систему «ракета + газы» замкнутой, можно записать:

 

Величиной можно пренебречь, так как |ΔM| << M. Разделив обе части последнего соотношения на Δt и перейдя к пределу при Δt → 0, получим

 

Рисунок 1.17.3. Ракета, движущаяся в свободном пространстве (без гравитации). 1 – в момент времени t. Масса ракеты M, ее скорость 2 – Ракета в момент времени t + Δt. Масса ракеты M + ΔM, где ΔM < 0, ее скорость масса выброшенных газов –ΔM > 0, относительная скорость газов скорость газов в инерциальной системе

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение

выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

Ma = μu,

где u – модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу для конечной скорости υ ракеты:

 

где – отношение начальной и конечной масс ракеты. Эта формула называется формулой Циолковского. Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ1 = 7,9·103 м/с при u = 3·103 м/с (скорости истечения газов при сгорании топлива бывают порядка 2–4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть равно 50.

Значительное снижение стартовой массы ракеты может быть достигнуто при использовании многоступенчатых ракет, когда ступени ракеты отделяются по мере выгорания топлива. Из процесса последующего разгона ракеты исключаются массы контейнеров, в которых находилось топливо, отработавшие двигатели, системы управления и т. д. Именно по пути создания экономичных многоступенчатых ракет развивается современное ракетостроение.

Механическая работа и мощность

Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла…    

Кинетическая и потенциальная энергии

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1). Рисунок 1.19.1. Работа … Между изменением скорости тела и работой, совершенной приложенными к телу…  

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком.

  Потенциальная энергия Ep зависит от выбора нулевого уровня, то есть от выбора… Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении…

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

  Потенциальная энергия при упругой деформации – это энергия взаимодействия… Свойством консервативности обладают наряду с силой тяжести и силой упругости некоторые другие виды сил, например, сила…

Закон сохранения механической энергии

  По теореме о кинетической энергии эта работа равна изменению кинетической…  

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.20.1 поясняет решение этой задачи.

Рисунок 1.20.1. К задаче Христиана Гюйгенса. – сила натяжения нити в нижней точке траектории.

Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

 

Обратим внимание на то, что сила натяжения нити всегда перпендикулярна скорости тела; поэтому она не совершает работы.

При минимальной скорости вращения натяжение нити в верхней точке равно нулю и, следовательно, центростремительное ускорение телу в верхней точке сообщается только силой тяжести:

 

Из этих соотношений следует:

 

Центростремительное ускорение в нижней точке создается силами и направленными в противоположные стороны:

 

Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно

F = 6mg.

 

Прочность нити должна, очевидно, превышать это значение.

Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) –… История хранит немалое число проектов «вечного двигателя». В некоторых из них…  

Упругие и неупругие соударения

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения.… С ударным взаимодействием тел нередко приходится иметь дело в обыденной жизни,… В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Примером абсолютно неупругого удара может служить попадание пули (или снаряда) в баллистический маятник. Маятник представляет собой ящик с песком массой M, подвешенный на веревках (рис. 1.21.1). Пуля массой m, летящая горизонтально со скоростью попадает в ящик и застревает в нем. По отклонению маятника можно определить скорость пули.

Обозначим скорость ящика с застрявшей в нем пулей через Тогда по закону сохранения импульса

 

При застревании пули в песке произошла потеря механической энергии:

 

Отношение M / (M + m) – доля кинетической энергии пули, перешедшая во внутреннюю энергию системы:

 

Эта формула применима не только к баллистическому маятнику, но и к любому неупругому соударению двух тел с разными массами.

При m << M почти вся кинетическая энергия пули переходит во внутреннюю энергию. При m = M – во внутреннюю энергию переходит половина первоначальной кинетической энергии. Наконец, при неупругом соударении движущегося тела большой массы с неподвижным телом малой массы (m >> М) отношение

Дальнейшее движение маятника можно рассчитать с помощью закона сохранения механической энергии:

где h – максимальная высота подъема маятника. Из этих соотношений следует:

 

Измеряя на опыте высоту h подъема маятника, можно определить скорость пули υ.

Рисунок 1.21.1. Баллистический маятник.

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии. Простым примером абсолютно упругого столкновения может быть центральный удар… Центральным ударом шаров называют соударение, при котором скорости шаров до и после удара направлены по линии…

Элементы гидро- и аэродинамики

Рассмотрим стационарное движение идеальной несжимаемой жидкости по трубе переменного сечения (рис. 1.22.1). Различные части трубы могут находиться… За промежуток времени Δt жидкость в трубе сечением S1 переместится на l1…  

Вращение твердого тела

и угловое ускорение ε   В этих формулах углы выражаются в радианах. При вращении твердого тела относительно неподвижной оси все его точки…

Законы Кеплера

Гравитация управляет движением планет Солнечной системы. Без нее планеты, составляющие Солнечную систему, разбежались бы в разные стороны и… Закономерности движения планет с давних пор привлекали внимание людей.… С точки зрения земного наблюдателя планеты движутся по весьма сложным траекториям (рис. 1.24.1). Первая попытка…

Все планеты движутся по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Почти все планеты Солнечной системы (кроме Плутона) движутся по орбитам, близким к круговым. Второй закон Кеплера(1609 г.):   Радиус-вектор планеты описывает в равные промежутки времени равные площади.