Рівняння нерозривності стаціонарного руху рідини в гідравлічній формі

Розглянемо спочатку елементарну струминку . Відповідно до закону збереження маси можна стверджувати, що масова витрата через усякий живий переріз елементарної струминки є величиною сталою, тобто dm=uρdω=const. Цей висновок випливає з властивостей елементарної струминки: у протилежному випадку масова витрата повинна зростати або зменшуватись необмежено, а це суперечить умові стаціонарного руху рідини. Отже, для будь-яких живих перерізів стисливої рідини або газу в елементарній струминці справедливою є умова

(9)

Рівняння (9) називають рівнянням нерозривності або суцільності руху для елементарної струминки стисливої рідини або газу. Якщо ρ=const, тобто рідина нестислива, то рівняння нерозривності руху (9) можна записати у вигляді


(10)

Цей вираз відображає властивість нестисливої рідини, тому його інколи називають рівнянням нестисливості рідини для елементарної струминки. З (10) випливає, що площа живого перерізу елементарної струминки не може дорівнювати нулю, оскільки в такому разі швидкість у цьому перерізі струминки прямуватиме до нескінченості, що фізично неможливе. Тому елементарна струминка в потоці не може обриватися в середині рідини або закінчуватися вістрям.


Аналогічно викладеному вище можна одержати рівняння нерозривності руху для реального потоку якщо просумувати витрати в елементарних струминках в межах кожного живого перерізу окремо. У результаті для стисливої рідини або газу вздовж потоку маємо


де Vi – середні швидкості у живих перерізах. При стаціонарному русі рідини, а у деяких випадках і газів (при невеликих швидкостях), зміною питомої маси можна знехтувати, тобто прийняти ρ=const. Тоді рівняння (11) можна переписати у вигляді

(12)

Можна сказати, що рівняння (12) є аналітичним записом закону збереження маси в гідравлічній формі для потоку нестисливої рідини. Це і є рівняння нерозривності для потоку рідини, котре формулюється так: витрата рідини через довільний переріз потоку в усталеному русі є величиною сталою. З рівняння (12) для двох перерізів можна записати

(13)

Тобто середні швидкості потоку обернено пропорційні площам відповідних живих перерізів.

39 Рівня́ння Берну́ллі — рівняння гідродинаміки, яке визначає зв'язок між швидкістю течії v, тиском p та висотою h певної точки в ідеальній рідині. Встановив його у 1738році Даніель Бернуллі.

Для ламінарної течії ідеальної нестисливої рідини рівняння Бернуллі має вигляд:

або

,

де ρ — густина рідини; g — прискорення вільного падіння.

40 В'я́зкість або внутрішнє тертя — властивість текучих тіл (рідин і газів) чинити опір переміщенню однієї їх частини відносно іншої. Одиниця вимірювання динамічного коефіцієнта в'язкості — Пуаз.

41 Згідно із законом Ньютона для внутрішнього тертя в'язкість характеризується коефіцієнтом пропорційності міжнапруженням зсуву і градієнтом швидкості руху шарів у перпендикулярному до деформації зсуву напрямку (поверхні шарів):

.

Коефіцієнт називають динамічний коефіцієнт в’язкості або абсолютною в'язкістю. Одиниця вимірювання динамічного коефіцієнта в'язкості — Паc, Пуаз (0,1Па·с).

Кількісно динамічний коефіцієнт в'язкості дорівнює силі F, яку треба прикласти до одиниці площі зсувної поверхні шару S, щоб підтримати в цьому шарі ламінарну течію із сталою одиничною швидкістю відносного зсуву.

42 Ламінарний потік (рос. ламинарный поток; англ. laminar flow; нім. Laminarströmung f, laminare Strömung f) – вид потоку в'язкої рідини (наприклад, нафти), при якому перемішування між сусідніми шарами рідини відсутнє. Турбулентним називається рух рідини (газу або плазми), що супроводжується утворенням вихорів.

Течія, що відбувається без утворення вихорів, називається ламінарною.

43 Число Рейнольдса() — характеристичне число[1] та критерій подібності у гідродинаміці, що базується на відношенні інертності руху течії флюїда до його в'язкості.

Це поняття було запропоноване Д.Г.Стоксом у 1851,[2] а назване на честь фізика Озборна Рейнольдса (1842–1912), який популяризував його використання у 1883.[3][4]

Число Рейнольдса часто використовують у задачах гідродинаміки при проведенні аналізу розмірностей, а також для визначення динамічної подібності між різними експериментальними випадками руху рідини. Це число також використовується для характеристики різних режимів: ламінарної або турбулентної течії. Ламінарна течія спостерігається при малих числах Рейнольдса, де сили в'язкості переважають, і вона характеризується сталістю розподілу швидкості руху рідини. Турбулентний режим спостерігається при великих числах Рейнольдса, коли переважають сили інерції, котрі, як правило, спричиняють хаотичні вихори та іншу нестабільність потоку.

Число Рейнольдса може бути визначене для низки різних ситуацій, коли рідина знаходиться у відносному русі до поверхні твердих тіл. Ці визначення зазвичай включають в себе такі властивості рідини, як густина і в'язкість, а також швидкість та характерну довжину (характеристичний розмір). Останній параметр є предметом узгоджень — наприклад радіус або діаметр в рівній мірі справедливі для характеристики сфери чи кола, але вибирають параметр попередньо узгоджений. Для задач повітро- чи судноплавання можуть використовуватись довжина або ширина об'єкту. Для задач, що розглядають течію в трубі або рух кулі в рідині часто використовують внутрішній діаметр труби чи діаметр кулі, відповідно. Для інших форм (наприклад, прямокутні труби або несферичні об'єкти) слід визначати еквівалентний діаметр. Для рідин із змінною густиною (наприклад, гази, що є стисливими) або змінною в'язкістю (неньютонівські рідини) застосовуються спеціальні правила. Швидкість в окремих випадках також може бути предметом узгоджень, зокрема, для випадку посудин з інтенсивним перемішуванням рідини.

Позначається Re[1], іноді R.

,

де: ,

Використані позначення фізичних величин:

— густина рідини або газу.

— характеристична швидкість,

— характеристична довжина або розмір,

— динамічна в'язкість,

— кінематична в'язкість,

Обтікання рідиною перешкод підкоряється закону подібності, згідно з яким подібні системи з однаковими числами Рейнольдса ведуть себе однаково. Наприклад, залежність швидкості від координати задається формулою виду

залежність тиску від координати визначається формулою виду

 

44 Гармонічними коливаннями називаються періодичні коливання фізичної величини (або будь-якої іншої) залежно від часу, які відбуваються згідно із законами синуса або косинуса

,