рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Группы соединения трансформаторов

Группы соединения трансформаторов - раздел Механика, Электромеханические системы Группой Соединения Трансформатора Называется Угол Сдвига Между Линейными Эдс ...

Группой соединения трансформатора называется угол сдвига между линейными ЭДС первичной и вторичной обмоток трансформатора. За первичную обмотку принимают обмотку высокого напряжения.

Группа соединения зависит от:

1) от направления намотки;

2) маркировки концов обмотки;

3) схемы соединения обмоток.

Группы соединения трехфазных трансформаторов обозначаются знаками следующего вида: Y/Y0–0, Y/∆–11 и т. д., где знак слева от черты показывает схему соединения обмоток ВН, знак справа от черты – схему соединения обмоток НН, цифра – угол между векторами линейных ЭДС обмоток ВН в НН, выраженный числом угловых единиц по 30°.

Например, обозначение Y/Y0–0 показывает, что обмотки высшего низшего напряжении соединены в звезду, причем обмотка НИ имеет выведенную нулевую точку, и угол между векторами линейных ЭДС обмоток высшего и низшего напряжения равен 0∙30=0°.

1) Рассмотрим соединение обмоток трансформатора Y/Y.

 

Рис. 1.25. Схема соединения и векторные диаграммы ЭДС для соединения трансформатора Y/Y

 

Предположим, что обмотки высшего и низшего напряжения соединены в звезду и имеют одинаковое направление намотки, что условно показано на рис.13.3.

Тогда ЭДС, индуктируемые в фазах обмоток высшего и низшего напряжения, будут совпадать: векторы Еа и ЕА, Еb и ЕВ, Ес и ЕС параллельны. Векторы линейных ЭДС соответствующих зажимов обмоток высшего и низшего напряжения (ЕАВ и Еab) оказались параллельны, т. е. угол между ними 0º (360º), и трансформатор принадлежит группе 0 (12). Если изменить обозначения зажимов обмоток НН, как показано на рис. 1.25 то при этом звезда фазных ЭДС обмоток повернется на 120°. Векторы Еа и ЕА, Еb и ЕВ, Ес и ЕС будут параллельными, так как обмотки фаз с и А, а и В, b и С находятся на одних и тех же стержнях и сцеплены с одинаковыми потоками. Угол между векторами линейных ЭДС ЕАВ и Еab равен 120°, т. е. мы получили группу 4. Если произвести еще одно изменение обозначения зажимов обмоток НН, то векторы фазных и линейных ЭДС обмоток НН повернутся еще на 120° (всего 240°) по часовой стрелке и мы получим группу 8. Если теперь обмотки НН намотать встречно обмоткам ВН или, что тоже самое, изменить обозначения начал и концов фаз НН, то фазные ЭДС обмоток высшего и низшего напряжения будут направлены встречно, и угол между векторами линейных ЭДС равен 180°, т. е. мы получили группу 6. При встречном направлении намоток обмоток высшего и низшего напряжений мы можем также производить круговое смещение зажимов и получить при этом группу 10 и группу 2. Таким образом, при соединении обмоток звезда — звезда мы получим любую четную группу: 2, 4, 6, 8, 10, 0.

2) Рассмотрим соединение обмоток трансформатора Y/∆.

 

Рис. 1.26. Схема соединения и векторные диаграммы ЭДС для соединения трансформатора Y/∆

 

При соединении звезда – треугольник векторы ЭДС фазных обмоток высшего и низшего напряжения, находящихся на одних стержнях сердечника, при согласном направлении намоток будут иметь одинаковое направление. При соединении обмоток треугольником линейные ЭДС совпадают с фазными, при соединении звездой линейные ЭДС смещены на 30° по фазе относительно фазных ЭДС. Поэтому для схемы, изображенной на рис. 1.26, треугольники линейных ЭДС обмоток высшего и низшего напряжения будут смещены на –30° или +330°, т. е. мы получили группу 11, показанную на векторной диаграмме. При круговом смещении зажимов обмоток НН треугольник линейных ЭДС будет поворачиваться на 120° или 240°, т. е. мы получим группы 3 и 7. При встречном направлении намоток обмоток НН можно получить группы 1, 5, 9.

Группы соединения необходимо знать для включения трансформаторов на параллельную работу.

 

– Конец работы –

Эта тема принадлежит разделу:

Электромеханические системы

Пермский Государственный Технический Университет.. Кафедра микропроцессорных средств автоматизации..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Группы соединения трансформаторов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Второй закон
  Все электрические машины обратимы, т.е. одна и та же машина может работать в режимах двигателя и генератора. Обратимость электрической машины – основное отличие электромеханического

Назначение и принцип действия трансформатора
  Трансформатор – это электромагнитный статический преобразователь с двумя или более неподвижными обмотками, который преобразует параметры переменного тока: напряжение, ток, ча

Устройство магнитопровода трансформаторов
В зависимости от способа изготовления магнитопроводы трансформаторов бывают пластинчатые и ленточные. Магнитопроводы однофазных трансформаторов бывают трех основных видов: стержневые, броневые и то

Устройство обмоток трансформаторов
Обмотки трансформаторов изготавливают из меди или алюминия. Для трансформаторов небольшой мощности, т. е. при небольших токах (до 25 А для воздушных и до 45 А для масляных трансформаторов), обмотки

Магнитные потоки и ЭДС обмоток трансформатора
При включении первичной обмотки трансформатора в сеть переменного тока по этой обмотке протекает ток I1, создающий магнитное поле. Большая часть магнитных линий замкнется по сталь

Ток холостого хода
При холостом ходе трансформатора под действием приложенного напряжения U1 в первичной обмотке протекает ток холостого хода I0. Намагничивающая сила первич

Векторная диаграмма трансформатора при холостом ходе
Основной магнитный поток в магнитопроводе трансформатора индуктирует в первичной и во вторичной обмотках ЭДС Е1 и Е2. Помимо основного магнитного потока с

Опыт холостого хода трансформатора
Холостым ходом трансформатора является такой предельный режим его работы, когда вторичная обмотка трансформатора разомкнута и ток вторичной обмотки I2=0. Опыт холостого ход

Потери при холостом ходе трансформатора
Мощность, потребляемая трансформатором при холостом ходе, идет на покрытие потерь в обмотках и стали: ∆P0 = ∆Pэл1 + ∆Pмагн

Приведение параметров вторичной обмотки к первичной
Так как в общем случае W1 ¹ W2, E1 ¹ E2, и т.д. соответственно разным W и E соответствуют разные пара

Физические процессы в трансформаторе при нагрузке
Рассмотрим работу трансформатора без нагрузки, т. е. в режиме холостого хода, когда ток во вторичной цепи I2=0, а ток в первичной цепи представляет собой ток холостого хода I

Векторная диаграмма трансформатора при нагрузке
После приведения вторичной обмотки трансформатора к виткам первичной мы можем перейти к построению векторной диаграммы. На рисунке показана векторная диаграмма для активно-индуктивной (рис.

Режим короткого замыкания трансформатора.
  Необходимо различать два режима короткого замыкания: 1) Аварийный режим – это режим в котором вторичная обмотка трансформатора замкнута накоротко при номинальном первичном

Векторная диаграмма трансформатора при коротком замыкании
  Векторная диаграмма трансформатора при коротком замыкании представлена на рис. 1.13. Для построения векторной диаграммы запишем основные уравнения ЭДС и токов: 1)

Совмещение режимов холостого хода и короткого замыкания
  Характеристики трансформатора при нагрузке определяют его рабочие свойства. Эти характеристики непосредственно можно получить только для трансформаторов небольшой мощности. Для тран

Относительное изменение вторичного напряжения трансформатора при нагрузке
  Изменением напряжения трансформатора называется (выраженная в % от номинального вторичного напряжения) арифметическая разность между номинальным вторичным напряжением при холостом х

Потери и коэффициент полезного действия трансформатора
  В процессе работы трансформатора под нагрузкой часть активной мощности Р1, поступающей в первичную обмотку из сети, рассеивается в трансформаторе на покрытие потерь. В ит

Устройство трехфазных трансформаторов и их особенности
Трехфазный трансформатор представляет собой соединение трех однофазных трансформаторов. Поэтому вся теория, рассмотренная для однофазного трансформатора относится и к трехфазному применительно к од

Параллельная работа трансформаторов
Трансформаторы в сетях и подстанциях чаще всего работают параллельно. Это обеспечивает надежность в электроснабжении, дает возможность отключить трансформатор на профилактику и в аварийной ситуации

Холостой ход трехфазного трансформатора
  При изучении режима холостого хода однофазного трансформатора мы видим, что при подведенном синусоидальном напряжении, кривые первичной ЭДС и основного потока синусоидальны, а крива

Устройство и принцип действия асинхронного двигателя
Электродвигатель – это основной элемент электропривода, осуществляющий преобразование электрической энергии в механическую, для приведения в движение различных станков и механизмов, транспортных и

Элементы обмоток переменного тока
Из чего состоит фаза: проводник ® виток ® катушка ® катушечная группа ® фаза. Два проводника составляют виток. Несколько витков составляют катушку, несколько катушек ® катушечную группу, несколько

Электродвижущая сила (ЭДС) обмотки машин переменного тока
  ЭДС фазы проследим по следующей структуре: проводник – виток – катушка – катушечная группа – фаза. Определим ЭДС проводника и витка с полным шагом y = t. Пр

Двигательный режим работы
  Пусть в начале ротор не вращается. Магнитное поле, пересекая проводники ротора индуктируют в них ЭДС. При замкнутой цепи ротора по обмотке его потечет ток. Взаимодействие п

Привидение параметров роторной обмотки к статорной
  Под приведенной роторной обмоткой понимается такая эквивалентная роторная обмотка, которая имеет такое же число фаз, такое же число витков, как и обмотка статора. Приведени

Явления связанные с вращением ротора асинхронного двигателя
При рассмотрении этого вопроса увидим, что частота ротора, ЭДС и индуктивное сопротивление с изменением скорости вращения ротора изменяются. Запишем выражение ЭДС неподвижного ротора.

Приведение асинхронного двигателя к эквивалентному трансформатору
Анализируя принцип действия трехфазного асинхронного двигателя, заметим, что в асинхронном двигателе много общего с трансформатором. Между обмотками статора и ротора двигателя, как и между

Схемы замещения асинхронной машины
  Для исследования работы асинхронной машины часто используются схемы замещения, которые должны отвечать основным уравнениям ЭДС и токов реальной машины. Реально обмотки стат

Энергетическая диаграмма асинхронного двигателя.
  Для вывода формулы этого момента предварительно рассмотрим энергетическую диаграмму асинхронного двигателя (рис. 2.13).   1) Активная мощность, потребляемая и

Вращающий электромагнитный момент асинхронного двигателя
  М – электромагнитный момент, создаваемый в результате взаимодействия вращающего магнитного поля с током в роторе (предварительное определение). Электромагнитный момент двигат

Максимальный (критический) момент асинхронной машины
Для определения максимального момента необходимо взять первую производную от М по S и приравнять к нулю . Определим из полученного выражения критическое скольжение – S

Рабочие характеристики асинхронного двигателя
Рабочие характеристики асинхронного двигателя (рис. 2.19) представляют собой зависимость частоты вращения ротора n2, полезного (нагрузочного) момента на валу M2,

Пуск при пониженном напряжении
  а) Реакторный способ пуска (рис. 2.20). При пуске для ограничения пускового тока в фазы двигателя включается сопротивление реактора, т.е. . Часть напряжен

Регулирование частоты вращения асинхронных двигателей. Естественные и искусственные механические характеристики
Для асинхронного двигателя частота вращения ротора определяется по формуле , или , откуда видно, что скорость вращения ротора можно регулировать: 1. f = var – изме

Изменение напряжения подводимого к статору
При изменении подводимого к двигателю напряжения изменяется момент, т.к. он пропорционален квадрату напряжения. Рис. 2.24. Механические характеристики АД при

Изменение частоты питающей сети
При изменении частоты питающей сети при Uсети=U1=const, меняется и критический момент, так как он зависит от частоты обратно пропорционально её квадрату.

Торможение с рекуперацией энергии в сеть.
При отсутствии внешнего статического момента на валу двигатель, подключенный к сети будет вращаться со скоростью, близкой к синхронной. При этом из сети потребляется энергия, необходимая для покрыт

Торможение противовключением
Противовключение это режим работы, в котором двигатель включен для одного направления вращения, а ротор двигателя вращается в противоположную сторону под действием внешнего статического момента наг

Устройство и принцип действия машин постоянного тока
Машины постоянного тока широко используются в качестве источника постоянного тока, либо преобразователя электрической мощности в механическую. Первая машина работает в режиме генератора, вторая в р

Обмотки якоря машин постоянного тока
Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору. Элементом обмотки

Реакция якоря в машинах постоянного тока
Следовательно, ЭДС якоря зависит от потока и скорости вращения.В процессе работы двигателя обмотки возбуждения и якоря создают магнитные поля. Результирующее магнитное поле двигателя можно рассматр

Электромагнитный момент генератора постоянного тока
  Сила, воздействующая на проводник с током равна , (рис. 3.8). Для расчета принимаем, что ток во всех проводниках одинаков, индукция на полюсном делении средняя, каждый проводник пра

Генератор независимого возбуждения
Схема включения генератора независимого возбуждения представлена на рис. 3.9. Рис. 3.9 Схема включения генератора независимого возбуждения.   Свойства генератора опр

Генератор параллельного возбуждения
Схема генератора параллельного возбуждения изображена на рис. 3.11.   Рис. 3.11 Схема включения генератора параллельного возбуждения.   Для самовозбужд

Генератор последовательного возбуждения
В генераторе последовательного возбуждения ток возбуждения Iв=Ia (рис. 3.15), а поэтому свойства этого генератора определяются лишь внешней характеристико

Двигатели постоянного тока
Двигатели постоянного тока широко используются в различных системах электропривода, где требуется широкий диапазон регулирования частоты вращения. Двигатель постоянного тока преобразовывает потребл

Реверсирование двигателя постоянного тока
  Рис. 3.19 Реверсирование двигателя постоянного тока Электромагнитный момент . Если изменить направление тока в якоре, то сила де

Двигатель параллельного (независимого) возбуждения
Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 3.20. Для пуска используется пусковой реостат (П. Р.).   Рис. 3.21 Схема включения дви

Двигатель последовательного возбуждения
Обмотка возбуждения двигателя включена последовательно с якорем, рис. 3.24, а. Ток якоря равен току возбуждения. Поэтому обмотка возбуждения имеет большое сечение и малое число витков. Последовател

Генераторное торможение с рекуперацией (отдачей) энергии в сеть
Переход двигателя в тормозной режим с отдачей энергии в сеть будет иметь место тогда, когда скорость двигателя w будет больше скорости идеального холостого хода w0. В этом случае ЭДС дви

Торможение противовключением
Противовключением называется режим, когда двигатель включен для одного направления вращения, а якорь его под действием внешнего момента или инерции вращается в противоположную сторону. При этом мом

Электродинамическое торможение
Суть этого способа торможения заключается в том, что якорь отключается от сети и замыкается на тормозное сопротивление , а обмотка возбуждения остается подключенной к сети, как показано на рис. 3.3

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги