рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Реакция якоря в машинах постоянного тока

Реакция якоря в машинах постоянного тока - раздел Механика, Электромеханические системы Следовательно, Эдс Якоря Зависит От Потока И Скорости Вращения.в Процессе Раб...

Следовательно, ЭДС якоря зависит от потока и скорости вращения.В процессе работы двигателя обмотки возбуждения и якоря создают магнитные поля. Результирующее магнитное поле двигателя можно рассматривать как сумму двух магнитных полей. При идеальном холостом ходе, когда ток якоря Ia≈0, в двигателе действует только МДС обмотки возбуждения Fв, которая создает магнитное поле, симметрично распределенное относительно оси полюсов. График распределения магнитной индукции в зазоре Bδ представляет собой трапецеидальную кривую (рис. 3.4, а). Если двигатель нагрузить, то по обмотке якоря потечет ток и появится МДС якоря Fa, вектор которой неподвижен и направлен перпендикулярно оси полюсов. МДС создает магнитное поле якоря (рис. 3.4, б). Если щетки двигателя расположены на геометрической нейтрали nn', то вектор МДС Fa направлен по геометрической нейтрали, т. е. по поперечной

оси двигателя. На рис. рис. 3.4, б показан также график распределения магнитной индукции поля якоря в зазоре. Сердечник якоря намагничивается, и его участки, расположенные по геометрической нейтрали, приобретают полярность Na и Sa. Уменьшение магнитной индукции поля якоря по геометрической нейтрали (в точках n и n') объясняется резким увеличением воздушного зазора в межполюсном пространстве двигателя.

 

Рис. 3.4 Картины магнитных полей и графики магнитной индукции машины постоянного тока

 

В реальных условиях работы с нагрузкой в двигателе одновременно действуют МДС Fв и Fa, которые создают результирующее поле двигателя. Воздействие магнитного поля якоря на магнитное поле возбуждения называют реакцией якоря.

На рис. 3.4, в показана картина результирующего магнитного поля и график распределения магнитной индукции поля в зазоре. Из сравнения картин магнитного поля и графиков распределения магнитной индукции в зазоре для режимов идеального холостого хода (рис. 3.4, а) и нагрузки (рис. 3.4, в) следует, что реакция якоря искажает магнитное поле двигателя. Физическая нейтраль mm' результирующего магнитного поля смещается на угол а относительно геометрической нейтрали nn'. Поэтому в точках n и n' магнитная индукция отличается от нуля и поэтому в сторонах секций обмотки якоря при их переходе через геометрическую нейтраль наводится ЭДС вращения евр, действие которой нарушает работу щеточного контакта, вызывая искрение . Искажение магнитного поля двигателя приводит к тому, что одни края полюсных наконечников и расположенные под ними зубцы якоря подмагничиваются, а другие – размагничиваются. Но так как магнитная система двигателей насыщена, подмагничивание одних краев полюсных наконечников и участка зубцового слоя якоря ограничивается, а размагничивание других краев полюсных наконечников не ограничивается. В итоге реакция якоря вызывает некоторое уменьшение результирующего магнитного потока, т. е. размагничивание двигателя.

Влияние реакции якоря на результирующий магнитный поток зависит также от положения щеток. Когда щетки находятся на геометрической нейтрали (рис. 3.4, б), МДС якоря Fa направлена по поперечной оси и в двигателе имеет место поперечная реакция якоря. Если щетки сместить с геометрической нейтрали против направления вращения якоря, размагничивающее действие реакции якоря усилится. Это объясняется тем, что одновременно со смещением щеток на угол β изменяется направление МДС якоря Fa (рис. 3.5). При этом МДС якоря помимо поперечной составляющей Faq=Facosβ приобретает еще и продольную составляющую Fad=Fasinβ, направленную по оси полюсов встречно МДС обмотки возбуждения Fв, что ведет к размагничиванию магнитной системы двигателя. Если же щетки сместить в противоположном направлении, то продольная составляющая Fad будет направлена согласно с МДС возбуждения Fв, что приведет к некоторому подмагничиванию двигателя. Но такое смещение щеток недопустимо, так как вызывает чрезмерное увеличение магнитной индукции Вк в зоне переключения тока в секциях обмотки якоря.

Вредное влияние реакции якоря проявляется также в том, что в моменты прохождения проводников обмотки якоря через зоны подмагниченных краев полюсных наконечников в проводниках увеличивается ЭДС. Напряжение между смежными коллекторными пластинами, к которым подключены эти проводники, может превысить допустимые пределы 25–30 В, что вызовет ионизацию пространства между коллекторными пластинами и возникновение электрической

дуги на коллекторе. Описанное явление называется «круговой огонь», оно очень опасно для электродвигателя.

Таким образом, вредное влияние реакции якоря в двигателях постоянного тока заключается в следующем: уменьшается основной магнитный поток Ф, что может привести к нарушению устойчивой работы двигателя за счет роста частоты вращения якоря при увеличении нагрузки, искажается результирующее магнитное поле двигателя, что вызывает появление на геометрической нейтрали (в зоне коммутации) магнитной индукции Вк и может вызвать нарушение работы щеточного контакта и привести к недопустимому искрению на коллекторе, повышается напряжение между смежными коллекторными пластинами, что может привести к появлению «кругового огня».

Чем меньше номинальная мощность коллекторного двигателя, тем слабее проявляются нежелательные последствия реакции якоря. Поэтому в двигателях малой мощности (менее 1 кВт) не применяют специальных мер по ослаблению реакции якоря. Однако при анализе работы коллекторных двигателей последствия явления реакции якоря необходимо учитывать.

– Конец работы –

Эта тема принадлежит разделу:

Электромеханические системы

Пермский Государственный Технический Университет... Кафедра микропроцессорных средств автоматизации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Реакция якоря в машинах постоянного тока

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Второй закон
  Все электрические машины обратимы, т.е. одна и та же машина может работать в режимах двигателя и генератора. Обратимость электрической машины – основное отличие электромеханического

Назначение и принцип действия трансформатора
  Трансформатор – это электромагнитный статический преобразователь с двумя или более неподвижными обмотками, который преобразует параметры переменного тока: напряжение, ток, ча

Устройство магнитопровода трансформаторов
В зависимости от способа изготовления магнитопроводы трансформаторов бывают пластинчатые и ленточные. Магнитопроводы однофазных трансформаторов бывают трех основных видов: стержневые, броневые и то

Устройство обмоток трансформаторов
Обмотки трансформаторов изготавливают из меди или алюминия. Для трансформаторов небольшой мощности, т. е. при небольших токах (до 25 А для воздушных и до 45 А для масляных трансформаторов), обмотки

Магнитные потоки и ЭДС обмоток трансформатора
При включении первичной обмотки трансформатора в сеть переменного тока по этой обмотке протекает ток I1, создающий магнитное поле. Большая часть магнитных линий замкнется по сталь

Ток холостого хода
При холостом ходе трансформатора под действием приложенного напряжения U1 в первичной обмотке протекает ток холостого хода I0. Намагничивающая сила первич

Векторная диаграмма трансформатора при холостом ходе
Основной магнитный поток в магнитопроводе трансформатора индуктирует в первичной и во вторичной обмотках ЭДС Е1 и Е2. Помимо основного магнитного потока с

Опыт холостого хода трансформатора
Холостым ходом трансформатора является такой предельный режим его работы, когда вторичная обмотка трансформатора разомкнута и ток вторичной обмотки I2=0. Опыт холостого ход

Потери при холостом ходе трансформатора
Мощность, потребляемая трансформатором при холостом ходе, идет на покрытие потерь в обмотках и стали: ∆P0 = ∆Pэл1 + ∆Pмагн

Приведение параметров вторичной обмотки к первичной
Так как в общем случае W1 ¹ W2, E1 ¹ E2, и т.д. соответственно разным W и E соответствуют разные пара

Физические процессы в трансформаторе при нагрузке
Рассмотрим работу трансформатора без нагрузки, т. е. в режиме холостого хода, когда ток во вторичной цепи I2=0, а ток в первичной цепи представляет собой ток холостого хода I

Векторная диаграмма трансформатора при нагрузке
После приведения вторичной обмотки трансформатора к виткам первичной мы можем перейти к построению векторной диаграммы. На рисунке показана векторная диаграмма для активно-индуктивной (рис.

Режим короткого замыкания трансформатора.
  Необходимо различать два режима короткого замыкания: 1) Аварийный режим – это режим в котором вторичная обмотка трансформатора замкнута накоротко при номинальном первичном

Векторная диаграмма трансформатора при коротком замыкании
  Векторная диаграмма трансформатора при коротком замыкании представлена на рис. 1.13. Для построения векторной диаграммы запишем основные уравнения ЭДС и токов: 1)

Совмещение режимов холостого хода и короткого замыкания
  Характеристики трансформатора при нагрузке определяют его рабочие свойства. Эти характеристики непосредственно можно получить только для трансформаторов небольшой мощности. Для тран

Относительное изменение вторичного напряжения трансформатора при нагрузке
  Изменением напряжения трансформатора называется (выраженная в % от номинального вторичного напряжения) арифметическая разность между номинальным вторичным напряжением при холостом х

Потери и коэффициент полезного действия трансформатора
  В процессе работы трансформатора под нагрузкой часть активной мощности Р1, поступающей в первичную обмотку из сети, рассеивается в трансформаторе на покрытие потерь. В ит

Устройство трехфазных трансформаторов и их особенности
Трехфазный трансформатор представляет собой соединение трех однофазных трансформаторов. Поэтому вся теория, рассмотренная для однофазного трансформатора относится и к трехфазному применительно к од

Группы соединения трансформаторов
Группой соединения трансформатора называется угол сдвига между линейными ЭДС первичной и вторичной обмоток трансформатора. За первичную обмотку принимают обмотку высокого напряжения. Групп

Параллельная работа трансформаторов
Трансформаторы в сетях и подстанциях чаще всего работают параллельно. Это обеспечивает надежность в электроснабжении, дает возможность отключить трансформатор на профилактику и в аварийной ситуации

Холостой ход трехфазного трансформатора
  При изучении режима холостого хода однофазного трансформатора мы видим, что при подведенном синусоидальном напряжении, кривые первичной ЭДС и основного потока синусоидальны, а крива

Устройство и принцип действия асинхронного двигателя
Электродвигатель – это основной элемент электропривода, осуществляющий преобразование электрической энергии в механическую, для приведения в движение различных станков и механизмов, транспортных и

Элементы обмоток переменного тока
Из чего состоит фаза: проводник ® виток ® катушка ® катушечная группа ® фаза. Два проводника составляют виток. Несколько витков составляют катушку, несколько катушек ® катушечную группу, несколько

Электродвижущая сила (ЭДС) обмотки машин переменного тока
  ЭДС фазы проследим по следующей структуре: проводник – виток – катушка – катушечная группа – фаза. Определим ЭДС проводника и витка с полным шагом y = t. Пр

Двигательный режим работы
  Пусть в начале ротор не вращается. Магнитное поле, пересекая проводники ротора индуктируют в них ЭДС. При замкнутой цепи ротора по обмотке его потечет ток. Взаимодействие п

Привидение параметров роторной обмотки к статорной
  Под приведенной роторной обмоткой понимается такая эквивалентная роторная обмотка, которая имеет такое же число фаз, такое же число витков, как и обмотка статора. Приведени

Явления связанные с вращением ротора асинхронного двигателя
При рассмотрении этого вопроса увидим, что частота ротора, ЭДС и индуктивное сопротивление с изменением скорости вращения ротора изменяются. Запишем выражение ЭДС неподвижного ротора.

Приведение асинхронного двигателя к эквивалентному трансформатору
Анализируя принцип действия трехфазного асинхронного двигателя, заметим, что в асинхронном двигателе много общего с трансформатором. Между обмотками статора и ротора двигателя, как и между

Схемы замещения асинхронной машины
  Для исследования работы асинхронной машины часто используются схемы замещения, которые должны отвечать основным уравнениям ЭДС и токов реальной машины. Реально обмотки стат

Энергетическая диаграмма асинхронного двигателя.
  Для вывода формулы этого момента предварительно рассмотрим энергетическую диаграмму асинхронного двигателя (рис. 2.13).   1) Активная мощность, потребляемая и

Вращающий электромагнитный момент асинхронного двигателя
  М – электромагнитный момент, создаваемый в результате взаимодействия вращающего магнитного поля с током в роторе (предварительное определение). Электромагнитный момент двигат

Максимальный (критический) момент асинхронной машины
Для определения максимального момента необходимо взять первую производную от М по S и приравнять к нулю . Определим из полученного выражения критическое скольжение – S

Рабочие характеристики асинхронного двигателя
Рабочие характеристики асинхронного двигателя (рис. 2.19) представляют собой зависимость частоты вращения ротора n2, полезного (нагрузочного) момента на валу M2,

Пуск при пониженном напряжении
  а) Реакторный способ пуска (рис. 2.20). При пуске для ограничения пускового тока в фазы двигателя включается сопротивление реактора, т.е. . Часть напряжен

Регулирование частоты вращения асинхронных двигателей. Естественные и искусственные механические характеристики
Для асинхронного двигателя частота вращения ротора определяется по формуле , или , откуда видно, что скорость вращения ротора можно регулировать: 1. f = var – изме

Изменение напряжения подводимого к статору
При изменении подводимого к двигателю напряжения изменяется момент, т.к. он пропорционален квадрату напряжения. Рис. 2.24. Механические характеристики АД при

Изменение частоты питающей сети
При изменении частоты питающей сети при Uсети=U1=const, меняется и критический момент, так как он зависит от частоты обратно пропорционально её квадрату.

Торможение с рекуперацией энергии в сеть.
При отсутствии внешнего статического момента на валу двигатель, подключенный к сети будет вращаться со скоростью, близкой к синхронной. При этом из сети потребляется энергия, необходимая для покрыт

Торможение противовключением
Противовключение это режим работы, в котором двигатель включен для одного направления вращения, а ротор двигателя вращается в противоположную сторону под действием внешнего статического момента наг

Устройство и принцип действия машин постоянного тока
Машины постоянного тока широко используются в качестве источника постоянного тока, либо преобразователя электрической мощности в механическую. Первая машина работает в режиме генератора, вторая в р

Обмотки якоря машин постоянного тока
Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору. Элементом обмотки

Электромагнитный момент генератора постоянного тока
  Сила, воздействующая на проводник с током равна , (рис. 3.8). Для расчета принимаем, что ток во всех проводниках одинаков, индукция на полюсном делении средняя, каждый проводник пра

Генератор независимого возбуждения
Схема включения генератора независимого возбуждения представлена на рис. 3.9. Рис. 3.9 Схема включения генератора независимого возбуждения.   Свойства генератора опр

Генератор параллельного возбуждения
Схема генератора параллельного возбуждения изображена на рис. 3.11.   Рис. 3.11 Схема включения генератора параллельного возбуждения.   Для самовозбужд

Генератор последовательного возбуждения
В генераторе последовательного возбуждения ток возбуждения Iв=Ia (рис. 3.15), а поэтому свойства этого генератора определяются лишь внешней характеристико

Двигатели постоянного тока
Двигатели постоянного тока широко используются в различных системах электропривода, где требуется широкий диапазон регулирования частоты вращения. Двигатель постоянного тока преобразовывает потребл

Реверсирование двигателя постоянного тока
  Рис. 3.19 Реверсирование двигателя постоянного тока Электромагнитный момент . Если изменить направление тока в якоре, то сила де

Двигатель параллельного (независимого) возбуждения
Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 3.20. Для пуска используется пусковой реостат (П. Р.).   Рис. 3.21 Схема включения дви

Двигатель последовательного возбуждения
Обмотка возбуждения двигателя включена последовательно с якорем, рис. 3.24, а. Ток якоря равен току возбуждения. Поэтому обмотка возбуждения имеет большое сечение и малое число витков. Последовател

Генераторное торможение с рекуперацией (отдачей) энергии в сеть
Переход двигателя в тормозной режим с отдачей энергии в сеть будет иметь место тогда, когда скорость двигателя w будет больше скорости идеального холостого хода w0. В этом случае ЭДС дви

Торможение противовключением
Противовключением называется режим, когда двигатель включен для одного направления вращения, а якорь его под действием внешнего момента или инерции вращается в противоположную сторону. При этом мом

Электродинамическое торможение
Суть этого способа торможения заключается в том, что якорь отключается от сети и замыкается на тормозное сопротивление , а обмотка возбуждения остается подключенной к сети, как показано на рис. 3.3

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги