Установки для проведения синтеза о-хлорстирола и его промежуточных продуктов

Установки для проведения синтеза о-хлорстирола и его промежуточных продуктов. Рассмотрим процесс алкилирования бензола и получение этилбензола. Рис. 2. Принципиальная схем алкилирования бензола на твердых катализаторах: 1 - теплообменник; 2 - реактор; 3 - холодильник; 4 - газосепаратор; 5, 6, 7 - ректификаторы, а - бензол; б - оборотный бензол; в - олефин; г -смесь бензола и олефина; д - неконденсирующиеся газы; в - жидкий алкилат; ж - моноалкилбензол; з - диалкилбензолы; и - кубовый остаток.

Технологическая схема алкилирования бензола на твердом гетерогенном катализаторе, например цеолите, довольно несложна (рис. 2) [4, 5]. По этой схеме непрореагировавшие бензол и диэтилбензол возвращаются на алкилирование, а кубовый остаток может служить топливом и вместе с отходящими газами обеспечивает потребности установки в топливе (на 60%). В процессе отсутствуют отходы, катализатор не вызывает коррозии и не загрязняет окружающей среды.

Однако, пока что во всем мире наиболее широко в качестве катализаторов применяют комплексные соединения хлорида алюминия с ароматическими углеводородами, несмотря на такие их существенные недостатки, как необходимость осушки сырья, образование хлористого водорода и хлорида натрия при промывке и нейтрализации алкилата, коррозия аппаратуры и необходимость очистки сточных вод. Использование в большей мере хлорида алюминия вызвано и тем, что он является катализатором не только алкилирования, но и диспропорционирования, что снижает выход неизбежно образующихся при алкилировании ди- и полиалкилпроизводных.

На практике используют жидкий катализаторный комплекс – хлорид алюминия в диэтилбензоле или в полиалкилбензольных фракциях, получаемых при алкилировании. Действие хлорида алюминия усиливается сокатализаторами, в качестве которых используют хлороводород или небольшие количества воды. Однако, чтобы избежать разложения катализатора, бензол тщательно сушат перед подачей на алкилирование.

Принципиальная схема процесса с использование катализаторных комплексов приведена на рисунке 3. Рис. 3. Принципиальная схема получения этилбензола при использовании катализаторного комплекса. 1 – колонна обезвоживания, 2 - сепаратор, 3 - реактор; 4 – газосепаратор, 5 - сепаратор для отделения катализаторного комплекса; 6 - блок приготовления свежего катализаторного комплекса; 7 - система промывки алкилата; 8, 9,10 - ректификационные агрегаты; а - исходный бензол; б - азеотропная смесь вода + бензол; в - вода; г - обезвоженный бензол; д -газы; е - циркулирующий катализаторный комплекс; ж - этилен; з - хлорид алюминия; и - свежий катализаторный комплекс; к - оборотный бензол; л - этилбензол; м - диэтилбензол; н - кубовый остаток; о - вода на промывку; п - сточные воды. При получении этилбензола алкилирование ведут с избытком бензола (200 – 300% от стехиометрического), чтобы уменьшить образование ди- и полиалкилбензолов.

И все же содержание последних оказывается значительным.

Диалкилпроизводные подвергаются переалкилированию в реакторе алкилирования. Но можно непосредственно использовать их в качестве товарных продуктов. В процессе алкилирования бензола с хлоридом алюминия циркулируют значительные объемы жидкого катализаторного комплекса. Причем в реакционной массе две жидкие фазы: катализаторный комплекс и смесь бензола и алкилбензолов.

В результате возможность подъема температуры процесса ограничена, так как при температурах выше 130 °С комплекс дезактивируется и разрушается (3, 6). Более интересно гомогенное алкилирование в присутствии хлорида алюминия. В этом случае количество катализатора определяется его растворимостью в бензоле, а давление процесса подирается таким, чтобы олефин находился в жидкой фазе. Реактор работает в адиабатическом режиме, и на выходе из него температура достигает 200 °С. При этом резко уменьшился выход побочных продуктов, а выход этилбензола стал близок к количественному.

По такой технологии работает установка мощностью 760 тыс. т/год. Ее особенностью является высокий выход продуктов алкилирования (99%) и более низкие удельные затраты хлорида алюминия (в два раза) по сравнению с обычным процессом. В схеме отсутствует рецикл катализатора. Последний выделяется при нейтрализации в виде гидроксида алюминия и используется на установках очистки сточных вод в качестве осадителя.

Большая единичная мощность установки в сочетании с высокой температурой в реакторе создает благоприятные условия для утилизации тепла реакции, в результате 90% потребности в тепловой энергии установка покрывает за счет использования названного тепла. Рассмотрим технологическую схему получения стирола. Ряс. 2. Принципиальная схеме получения стирола: 1 – контактный аппарат; 2 – теплообменник; 3 – подогреватель; 4 – холодильник; 5 – газосепаратор; 6 сепаратор воды; 7 – смеситель; 8, 9, 10 – ректификационные агрегаты; а – бензол; б –. водяной пер; в – водородсодержащие газы; г – вода; д – ингибитор; е – оборотный бензол; ж – «печное масло»; л – стирол-сырец; ы – товарный стирол; к – кубовый остаток.

Этилбензольная шихта подогревается в теплообменнике до 70-95 за счет теплоты химически загрязненного конденсата и подается в испаритель вместе с небольшим количеством водяного пара. Из испарителя пары шихты с температурой 160 поступают в перегреватель, где перегреваются до 500-550 за счет теплоты перегретого водяного пара, выходящего из межступенчатого подогревателя реактора.

Из перегревателя пары шихты направляются на дегидрирование в реактор. Теплота, необходимая для реакции, подводиться с водяным паром, перегретым в печи до 700-750 . Пароэтилбензольная смесь на входе в реактор имеет температуру 560-630 . За счет эндотермической реакции после первого реактора температура контактного газа снижается до 570 . Контактный газ из реактора поступает в межступенчатый подогреватель, где подогревается до 580-630 , и затем направляется во второй реактор.

Контактный газ из реактора с температурой 570 поступает в котел-утилизатор. Охлажденный до 180-200 контактный газ из котла-утилизатора направляется в пенный аппарат, где происходит дальнейшее охлаждение контактного газа и отмывка его от механических примесей. Охлажденный контактный газ поступает на конденсацию. Конденсация осуществляется последовательно в нескольких конденсаторах.

Полученные конденсаты стекают в отстойную емкость, где происходит расслаивание на водный и углеводородные слои. Верхний углеводородный слой, называемый печным маслом, самотеком поступает в сборник, где заправляется ингибитором гидрохиноном, и направляется на ректификацию. Нижний водный слой – химически загрязненный конденсат – собирается в емкость и насосом подается на отмывку контактного газа в пенный аппарат, откуда конденсат после охлаждения в теплообменнике направляется на очистку от механических примесей.

Несконденсировавшийся газ после конденсаторов компримируется и поступает в линию топливного газа. Основным процессом получения стирола в промышленности остается каталитическое дегидрирование. Увеличению равновесного выхода стирола благо­приятствует повышение температуры и понижение давления. По­этому дегидрирование ведут при температуре около 600°С, ис­пользуя разрежение или подачу острого пара. Выход стирола за проход составляет 25–35%. Катализатором служат смеси окси­дов железа и хрома, продотированные, например, карбонатом ка­лия. Ректификация стирола-сырца проводится в вакууме при до­бавлении ингибиторов полимеризации.

Принципиальная схема процесса представлена на рис. 2. Сравнительно небольшая разни­ца температур кипения стирола и этилбензола требует примене­ния высокоэффективных ректификационных колонн. Лучшие современные предприятия по производству стирола характеризуются следующими расходными показателями на 1 т стирола: Этилен, т 0,307 Бензол, т 0,820 Пар (Р=О,53 МПа) . .1,70 Электроэнергия, кВт-ч 65 Топливо, ГДж . . .6,35 Перспективным методом производства стирола является окис­лительное дегидрирование этилбензола диоксидом серы – необра­тимый процесс, малочувствительный к примесям, содержащимся в этилбензоле, и позволяющий получить стирол с высоким выхо­дом. Перспективен и процесс сопряженного окислительного дегидрирования, по которому получают стирол и оксид пропилена [ 4, с. 206 –207]. По этой технологии сооружен ряд крупных производств, в частности в Нидерландах.