Справа — термометр конца XIX в. со шкалами по Реомюру и Цельсию.

чем в жидком. Одним из исключений является вода, плотность которой при нормальном давлении выше плотности льда.

Большинство твёрдых веществ на­ходится в кристаллической форме: их частицы — молекулы, атомы или ионы — расположены в строгом по­рядке, образуя регулярную простран­ственную структуру — кристалличе­скую решётку. Поэтому при переходе жидкости в твёрдое состояние моле­кулы ведут себя подобно солдатам, получившим команду к построению.

Вместе с тем частицы в кристалли­ческой решётке не неподвижны, они постоянно совершают колебатель­ные движения. Если частицы, распо­ложенные на поверхности твёрдого вещества, приобретают энергию, до­статочную для преодоления силы притяжения остальных частиц в кри­сталле, то они «улетают», образуя пар. Все твёрдые вещества имеют опреде­лённое давление пара, хотя оно обыч­но очень мало, особенно для ионных кристаллов. Так, для NaCl давление па­ра, равное всего 0,001 мм рт. ст.

ТЕКУТ ЛИ ОКОННЫЕ СТЁКЛА?

Обычное оконное стекло по своему строению не кристаллическое вещество, а жидкость, только очень вязкая. Лишь при сильном нагревании стекло начина­ет заметно течь. При этом температуры плавления, которая характеризует тела кристаллического строения, у стекла не существует: размягчение по мере повышения температуры происходит постепенно. Вещества с подобными свойствами так и называются — стекло­образные, или просто стёкла.

Однако до сегодняшнего дня никто не замечал, чтобы оконное стекло сте­кало в сторону подоконника. Если бы стекло хоть в малейшей степени было текучим, люди не могли бы строить со­временные мощные оптические теле­скопы, такие, например, как самый крупный в мире телескоп в чилийской пустыне Атакама, названный «Очень большим оптическим». Диаметр его зеркала 8,2 м. Точность шлифовки зер­кала исключительно высока, малейшие деформации стекла недопустимы.

С другой стороны, при исследова­нии средневековых витражей, изготов­ленных из цветных стёкол, выяснилось: в нижней части они толще, чем в верх­ней. Некоторые учёные сделали вывод, что это следствие очень медленного, на протяжении многих веков, течения сте­кла под действием собственного веса, и даже предложили использовать дан­ное свойство для установления време­ни изготовления старинных стёкол. У химиков существовало поверье, что

длинные стеклянные трубки и палочки нельзя долго хранить в вертикальном положении, так как они постепенно из­гибаются. Об этом можно было прочи­тать ещё в начале XX в. в книге извест­ного немецкого учёного, лауреата Нобелевской премии по химии Виль­гельма Оствальда (1853—1932) «Физи­ко-химические исследования».

Английский исследователь Роберт Джон Рэлей (1875—1947), сын знамени­того физика, Нобелевского лауреата Джона Уильяма Рэлея, решил проверить эти утверждения экспериментально. Такая проверка обычно связана с изме­рением вязкости: зная вязкость, можно рассчитать величину деформации, на­пример, за 10 или 100 лет.

Вязкость — свойство жидкости (или газа) оказывать сопротивление переме­щению отдельных слоёв друг относитель­но друга, а также перемещению твёрдо­го тела, помещённого в жидкость. В Международной системе единиц (СИ) вязкость имеет размерность Па•с, но на практике распространена вне­системная единица вязкости пуаз (П): 1 П = 0,1 Па•с. Она названа в честь французского физика Жана Луи Пуазейля (1799—1869), который вывел форму­лу для объёма жидкости V, протекающей за время г по трубе с гладкими стенка­ми длиной l и диаметром R при разнице давлений на концах трубы Dр: V= pDrtR4/8hl, где h — вязкость жидкости.

Однако измерить вязкость стекла при комнатной температуре Рэлей не мог. Оценки, основанные на опреде­лении вязкости разогретых выше 500 °С

стёкол, дают для 20 °С значение 1021 П. Для сравнения: вязкость воды при 20 °С равна 0,01 П, глицерина — 15 П, смо­лы — примерно 108 П. Отсюда следу­ет, что стекло в 10 трлн. раз более вяз­кая жидкость, чем смола.

В 1923 г. Рэлей провёл следующий опыт. Он взял стеклянный стержень длиной около 1 м и диаметром 5 мм, поместил его в горизонтальном положе­нии на два штыря, вбитых в кирпичную стену, так, чтобы стержень опирался на них только своими концами. К центру стержня был подвешен груз массой 300 г. (Как потом выяснилось, эта на­грузка составляет примерно треть от максимальной: точно такой же стер­жень ломался от нагрузки чуть больше 1 кг.) Пол тяжестью груза стержень сра­зу прогнулся на 28 мм в центральной части. И в течение семи лет это значе­ние практически не менялось. К 1930 г., когда опыт завершился, провисание стержня под нагрузкой увеличилось ещё всего на 1 мм, причём это измене­ние в положении груза относительно стены произошло в первые три года и было вызвано скорее всего деформаци­ей самой стены.

О результатах этого необычного эксперимента Рэлей написал в статье, которую озаглавил «Могут ли стеклян­ные трубки и стержни изгибаться под действием собственного веса?». Она была опубликована в журнале «Nature» («Природа») в 1930 г. Любопытно отме­тить, что фамилия автора статьи приве­дена без инициалов, в отличие от имён других авторов в том же номере. И это

*Процесс перехода твёр­дого вещества в пар назы­вают возгонкой или суб­лимацией. Обратный процесс — кристаллизация из пара.

(0,133 Па), достигается при нагреве кристалла до 567 °С. А чтобы полу­чить такое же давление пара для CaF2, нужна температура 1195 °С. Ещё труд­нее испаряются некоторые металлы; рекорд принадлежит вольфраму: 0,001 мм рт. ст. при 2975 °С.

С повышением температуры энер­гия колебаний молекул твёрдого ве­щества увеличивается, и когда она превышает энергию межмолекуляр­ного притяжения, кристаллическая решётка разрушается — происходит плавление кристалла.

Существуют твёрдые вещества, частицы которых не настолько стро­го упорядочении:, чтобы образовать правильную кристаллическую решётку. Такие вещества принято называть аморфными (от греч. «аморфос» — «бесформенный»). В отличие от кри­сталлических, они не имеют опреде­лённой температуры плавления, а постепенно размягчаются в некото­ром интервале температур. К аморф­ным веществам относятся стекло, природные и синтетические смолы, многие пластмассы.

не опечатка: учёный был лордом. Этот титул Рэлей унаследовал от отца, кото­рому он был пожалован за выдающие­ся научные достижения. А лорды-учёные подписывали свои статьи без имени.

Но самое интересное произошло ровно через два месяца после публика­ции Рэлея. В том же журнале и точно под таким же названием была напечата­на статья другого учёного — К. А. Спен­сера. Оказалось, он проводил аналогич­ный эксперимент, с той лишь разницей, что занимался этим делом не для удов­летворения собственного любопытства, а по долгу службы: учёный работал в из­вестной американской фирме «Джене­рал Электрик» в лаборатории техноло­гии стекла. Вместо стержня Спенсер использовал прямую стеклянную труб­ку длиной 1,1 м и диаметром 1 см при толщине стенок 1 мм. Нагрузка в его опыте была более солидной — 885 г, что приближалось к пределу прочности трубки.

Спенсер начал опыт в 1924 г., и трудно сказать, сколько бы он продол­жался, если бы исследователь не прочи­тал статью Рэлея. После этого его тер­пение не выдержало, хотелось сравнить свои результаты с опубликованными. Итак, через шесть лет после начала опыта Спенсер снял груз. На этот раз изменения были налицо: трубка провис­ла в центре на 9 мм.

При оценке результатов этого опы­та не следует забывать, что нагрузка бы­ла близка к предельной и в десятки раз превышала вес самой трубки. Да и опыт продолжался немалое время.

А главное — более поздние экспери­менты показали, что подобная дефор­мация не является результатом вязко­го течения стекла.

Это доказал тот же Спенсер. Он на­мотал тонкие стеклянные нити на труб­ку диаметром 2 см и выдержал их в та­ком состоянии в течение длительного времени при небольшом подогреве. Когда нити сняли с трубки, они оказа­лись изогнутыми по дуге радиусом око­ло 60 см. Однако когда их поместили на поверхность ртути, где практически нет трения, нити стали выпрямляться — сначала быстро, потом медленнее. Если бы деформация была результатом тече­ния стекла, нити никогда бы не выпря­мились!

Причину остаточной деформации стекла выяснили лишь в начале 50-х гг. Оказывается, в нём под влиянием на­грузки происходит медленная диффу­зия катионов Na+, которых в обычном стекле много. После снятия нагрузки эти катионы постепенно возвращаются к исходному положению, и в конце кон­цов стеклянное изделие вновь принима­ет прежнюю форму.

Итак, опыты дали однозначный ре­зультат: стекло не течёт под нагрузкой и тем более под действием собственно­го веса.

Почему же тогда стеклянные труб­ки действительно нередко имели замет­ный изгиб, а старинные стёкла утолщены в нижней части?

Спенсер нашёл этому довольно правдоподобное объяснение. До того как в самом начале 20-х гг. XX в. был

введён машинный способ вытягивания стеклянных трубок, эту работу делали вручную. Но и самый искусный стекло­дув не мог получить идеально прямую трубку длиной до 1 м и более. В лабо­ратории стеклянные трубки хранили (да и сейчас часто хранят) в вертикаль­ном положении в специальных стойках где-нибудь за шкафом в углу. Химики, разумеется, старались выбирать для себя трубки поровнее, и таким образом происходила естественная отбраковка изогнутых трубок. Так появился (и да­же вошёл в некоторые учебники) миф о самоизгибании трубок.

Теперь несколько слов о средне­вековых витражах. Здесь причина неравномерной толщины стекла ещё интереснее, и связана она со старин­ной технологией изготовления оконных стёкол. Искусный стеклодув набирал на конец трубки большой, килограмма на четыре, кусок размягчённого стек­ла и выдувал из него пузырь, который затем сплющивал. Получался на удив­ление однородный (для ручной работы) диск диаметром метра полтора, с на­плывом по краям. Из этого диска и нарезали (от центра к краям) узкие стёкла для витражей. С одной стороны (там, где был край диска) они были немного толще, и при установке тако­го куска в оконный переплёт его, как правило, размешали толстой частью вниз. Спустя столетия, когда старинная технология изготовления оконного стек­ла была давно забыта, возникла мысль, что утолщение внизу стекла — это ре­зультат его стекания.

*Плавление — процесс переходя твёрдого вещест­ва в жидкость. Обратный процесс называют кристал­лизацией из жидкой фазы (расплава).