рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общие положения

Общие положения - раздел Химия, Реальное строение металлических кристаллов Технология Обработки Металлов Состоит Из Следующих Основных Этапов: ...

Технология обработки металлов состоит из следующих основных этапов:

а) выплавка сплавов заданного химического состава в плавильных агрегатах;

б) изготовление заготовок литьем, сваркой, давлением;

в) предварительная механическая обработка изделий;

г) термическая обработка для получения заданных механических свойств;

д) окончательная чистовая механическая обработка.

Термообработка один из важнейших этапов обработки сплавов ведется при определенных температурах, во времени, с определенными скоростями нагрева и охлаждения, которые представляются в координатах температура – время.

V= (8)

где t1 – температура;

τ1 – время.

 

3.2Классификация термической обработки (ТО)

 

3.2.1 Отжиг – вид ТО для приведения сплава в более устойчивое состояние. При отжиге снимается наклеп, уменьшается количество дислокаций, снимаются напряжения, металл становится мягче, лучше механически обрабатывается. Охлаждаются сплавы медленно, с термической печью. Отжиг бывает полный, неполный, низкий и диффузионный. Полный отжиг – это вид Т.О. с нагревом выше температур G – S – E (Ас3) на 30-50C и охлаждение с печью. При полном отжиге происходит полная перекристаллизация феррита в аустенит с растворением в нем цементита. При неполном отжиге сплав нагревается выше линии PSK (Ас1), но ниже G SE (Ас3) и полной перекристаллизации не происходит. Металл также охлаждается с печью. При низком отжиге сплав нагревается ниже PSK (Ас1) на 30-40оС и охлаждается с печью. Перекристаллизация не происходит. Снимаются напряжения, уменьшается количество дислокаций. Низкий отжиг часто называется – рекристаллизационным отжигом. Диффузионный отжиг (гомогенизация) применяется для устранения ликвации, то есть разности химического состава стали по сечению слитка, литой заготовки. Металл длительно (20-24 часа) нагревают до 950-1100С, выдерживают. Для уменьшения зерна затем делают улучшение или закалку.

3.2.2 Закалка – технологический процесс ТО с целью повышения прочности и твердости. При этом получается нестабильная, напряженная, с большим количеством дислокаций структура – мартенсит. При закалке конструкционной стали, металл нагревается выше температуры G S (Ас3) на 30-50С, выдерживается для выравнивания температуры и быстро охлаждается в выбранном охладителе. Феритно – перлитного превращения аустенита в этом случае не происходит из-за отсутствия диффузии. Аустенит (Feγ(C)) превращается в мартенсит – пересыщенный раствор внедрения углерода в - железо (Fe(C)) c тем же содержанием углерода в феррите, который был в аустените. Это полная закалка доэвтектоидной, конструкционной стали.

Заэвтектоидные, инструментальные стали подвергаются неполной закалке с нагревом выше линии PSK (Ас1), но ниже SE (Ас3). А (Feγ(C)) превращается в мартенсит - Fe(C), цементит (Ц) остается цементитом.

3.2.3. После закалки проводится термическая операция отпуск, состоящая в нагреве закаленного сплава ниже температуры превращения (Ас1) для получения определенной структуры и заданных механических свойств. Отпуск может быть низким (100-250С), средним (300-450С) и высоким (450-670С). Режимы отпуска как для углеродистых, так и для легированных сталей подбираются по диаграмме железо – углерод, диаграмме изотермического превращения (распада) аустенита (С –– диаграмма). Рисунок 40 показывает изотермический распад аустенита для эвтектоидной стали, содержащей 0,8% углерода, то есть инструментальной стали. На рисунке 41 изображена диаграмма распада аустенита для доэвтектоидной (конструкционной) стали.

Из рисунков 41 и 42 видно, что подбирая различные скорости охлаждения можно получать из аустенита различные структуры с разными механическими свойствами. Подбирая определенные режимы отпуска, можно из мартенсита получать различные структуры с разными механическими свойствами. Необходимо помнить и знать, что структуры (бейнит, тростит, сорбит, перлит), полученные отпуском из мартенсита всегда имеют механические свойства намного выше (от 10 до 100%), чем те же структуры, полученные из аустенита подбором скоростей охлаждения. Это происходит потому, что структуры, полученные отпуском мартенсита, имеют более дисперсную (мелкозернистую) структуру феррита, цементита, перлита.

 

 

 

Рисунок 40 – Диаграмма изотермических превращений аустенита (0,8% С)

Рисунок 41 – Диаграмма изотермического распада аустенита для доэвтектоидной стали

 

3.2.4 Химико – термическая обработка (ХТО)

ХТО – это насыщение поверхностного слоя детали элементами таблицы Менделеева с целью повышения прочности, твердости или придания поверхности специальных свойств (коррозионная стойкость, жаростойкость, жаропрочность и т. п.).

ХТО сводится к диффузионному насыщению поверхностного слоя неметаллами (C, N, Si, B, O и др.) и металлами ( Cr, Al, Ni, Cu, Ti и др.) на глубину от 0,001 до 1 мм.

ХТО происходит при относительно высоких температурах с протеканием нескольких процессов:

- получение диффундирующего, легирующего элемента в атомарном или ионизированном состоянии повышенной концентрации;

- адсорбция атомов (ионов) на поверхность изделия с образованием химических связей между элементом и основным металлом (химсорбция)

- диффузия адсорбированных атомов от поверхности вглубь обрабатываемого изделия.

Поверхностный металл отличается от исходного химическим составом, структурой и свойствам. ХТО повышает твердость, прочность, износостойкость, кавитационную и коррозионную стойкость, создавая на поверхности остаточные напряжение сжатия, увеличивает надежность и долговечность машины.

Для цементации используются низкоуглеродистые (0,1-0,18% углерода) чаще всего легированные стали. Температура цементации выше Ас3. Цементованный слой имеет переменную концентрацию углерода (рис. 42). Конценрация углерода в поверхностном должна быть 0,8-1,0 %. Цементировать можно в твердом карбюризаторе, с использованием газов (CH4, C2H6 и др.) и жидкостей (керосин, синтин).

Нитроцементация – это насыщение поверхностного слоя C и N одновременно при температуре 840-860С в науглероживающем газе (CH4) и аммиаке (NH3). Нитроцементацию можно проводить исполюзуя цианистые соли KCN, NaCN при температурах 820-860С

Азотирование ведут в аммиаке NH3 при температуре 450-500С. Азотируют обычно низко и среднелегированные стали, содержащие нитридообразующие элементы (Cr, Mo, V, Ti, Mn, Al и др.). Твердость выше, чем у цементуемого слоя. Увеличивается выносливость деталей на 30-100%. Применяют инное, лазерное и плазменное азотирование.

Борирование производят в расплавленной буре (Na2B4O7) при температуре 930-950С. Изделие служит катодом.

а б

 

а – распределение углерода;

б – распределение твёрдости

 

Рисунок 42 – Схема распределения углерода и твердости после закалки и низкого отпуска по толщине цементованного слоя (хэ – эффективная толщина слоя; х0 – общая длина слоя)

 

 

3.2.5 Термомеханическая обработка (ТМО)

ТМО сочетает в себе обработку сплавов всеми видами давления (ковка, штамповка, прокатка, прессование и др.) с одновременной термической обработкой. Это наиболее прогрессивная упрочняющая сплавы технология. Она позволяет достичь прочности стали до 320 кгс/мм, т.е. намного больше чем при легировании и обычной термообработке. Бывает высокотемпературная ТМО, низкотемпературная ТМО. Чем больше степень деформации аустенита, тем прочнее мартенсит.

3.2.6 Нормализация стали – это нагрев ее выше температуры Ас3 и охлаждение на воздухе с целью измельчения зерна, получения перлита, повышение прочности, твердости.

– Конец работы –

Эта тема принадлежит разделу:

Реальное строение металлических кристаллов

Содержание... Введение Основы теории сплавов Классификация...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие положения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кристаллическое строение металлов
Металлы это группа элементов, расположенная левее галлия, индия и талия, а не металлы – правее мышьяка, сурьмы, висмута. У металлов в узлах решетки расположены протоны (ионы), между протонами распо

Реальное строение металлических кристаллов
Кристаллы металлов имеют небольшие размеры, разветвлены, поэтому металлические изделия состоят из большого числа кристаллов. Металлические изделия имеют поликристаллическое строение, при относитель

Методы изучения строения металлов
Для изучения структуры сплавов и металлов, определения причин их разрушения используются следующие основные методы анализа: - химический анализ на элементы; - спектральный анализ

Кристаллизация металлов, фазовые превращения
Любое вещество, любой элемент может находится в трех агрегатных состояниях: твердом, жидком, газообразном. Только углерод может находится в двух состояниях твердом и газообразном.

Пластическая деформация, механические свойства и рекристаллизация
Из всех свойств материалов механические свойства являются важнейшими. Наиболее ответственные детали машин изготавливают из металлов, ими часто армируют композиты, чтобы обеспечить необходимую прочн

Пути повышения прочности металла
1.7.1. Создание металлов и сплавов с бездефектной структурой; повышением плотности дефектов, затрудняющих движения дислокации. В настоящее время получены ните- видные кристаллы (усы), прочность кот

Понятие о сплавах
Сплав – это вещество, полученное сплавлением, спеканием, электролизом, возгонкой двух или более элементов. Сплав, приготовленный из металлов или имеющий металлическую основу и обладающий металличес

Углеродистые стали
Основным продуктом чёрной металлургии является сталь, которую выплавляют из чугуна и возвратного металлолома. ~ 90 % выплавляется углеродистых сталей, 10 % легированных. Стали сочетают высокую проч

Влияние элементов на свойства сталей
Углерод – изменяет структуру железа, даёт возможность производить улучшение, повышает прочность и твёрдость, понижает пластичность и ударную вязкость, снижает хладноломкость сталей, т.е. ударную вя

Основные превращения в стали
  Существует четыре превращения в стали: а ) П А ; Fe

Выбор параметров термообработки
Выбор температуры закалки углеродистых сталей определяется положением точек А3 для доэвтектоидных (конструкционных) сталей и А1 для эвтектоидных и заэвтектоидных (инструментал

Поверхностная закалка стали
Назначение поверхностной закалки – повышение твердости и износостойкости поверхности, предела выносливости. При этом сердцевина становится вязкой, и изделие воспринимает ударные нагрузки и изгибающ

Лазерная и плазменная термическая обработка
Лазерная термическая обработка производится мощным световым лучом. Особенность ЛТО является локальное воздействие на металл. Глубина упрочненного слоя от 0,3 до 1,0мм. Лазерным лучом металл (сплав)

Цель легирования
Металлы и сплавы легируют элементами таблицы Менделеева для повышения механических свойств или придания специфических свойств (износостойкость, криогенность, коррозионностойкость в разных средах, ж

Влияние легирующих элементов на кинетику распада аустенита в стали. Полиморфизм железа
Практически все элементы таблицы Менделеева, применяемые для легирования и микролегирования стали сдвигают точки S, E ,C диаграммы железа-углерод влево, т.е. в меньшие концентрации по углероду при

Цементуемые (нитроцементуемые) легированные стали
К данной группе относятся низко – и среднелегированные стали, содержащие углерода 0,1÷0,3 %. После ХТО, закалки и низкого отпуска на поверхности детали твердость HRC достигает 58 ÷ 62

Высокопрочные стали
Они имеют предел прочности σВ = 150 – 200 кг/мм²(1500-2000 МПА), при δ = 8 – 6% и аn=3 – 15кгм/см², КС=30–150 кДж/м

Арматурные стали
Они применяется для армирования железобетонных изделий. К ним относятся, например, Ст5, Ст40, Ст 50, 35Г2СА, 23Х2Г2Т, 45ГС, 25ГС2 , 22Х2Г2Р, 20Х2Г2СР и др. Горячекатаные арматурные стали п

Пружинные стали
Они работают в области упругой деформации металла под воздействием циклических нагрузок. Поэтому они должны иметь высокое значение предела упругости, текучести, выносливости при необходимости пласт

Шарикоподшипниковые стали (ШХ)
Они работают в условиях износа, больших контактных нагрузок. К ШХ сталям предъявляются высокие требования по неметаллическим включениям. ШХ стали содержат обычно углерода от 0,7 до 1%, легируются х

Инструментальные стали (ИС)
Основные требования к инструментальным сталям: сохранение режущей кромки в течении длительного времени, устойчивость против истирания, твердость более 60 HRC, высокая красностойкость. Сталь в штамп

Твердые сплавы (ТС)
ТС используются и работают до температур 1000оС. Твердость может достигать 80-85 HRC. Твердосплавные пластинки на 90-95 % состоят из карбидов, связкой является кобальт. Они быва

Стали для холодной штамповки
В автомобильной промышленности применяют холодную штамповку из листовой стали. Обычно применяют низкоуглеродистые кипящие стали 08КП, 08ФКП, 08Ю. Для исключения деформационного старения добавляют A

Износостойкие стали
К износостойким сталям относятся графитизирующие стали, содержащие C – 1.3 ÷ 1.8%, Si – 0,7 ÷ 1,7%, Mn – 0,2 ÷ 0,5%. К лучшим износостойким сталям относится сталь Гадф

Нержавеющие стали (коррозионностойкие)
Коррозия – процесс разрушения металла под действием внешней среды. Различают химическую коррозию и электрохимическую, развивающуюся при контакте с электролитами с образованием на поверхности сплава

Жаростойкие и жаропрочные стали
Под жаростойкостью (окалиностойкость) понимают сопротивление металла окислению в газовой среде при температурах выше 550°С. Для этого сталь легируют Cr, Al, Si, которые создают на поверхности оксид

Магнитные стали
Магнитные стали и сплавы имеют высокую коэрцетивную силу (затрачивается много энергии на размагничивание и намагничивание). Это дает мартенсит с высокой плотностью дефектов. Материал постоянных маг

Криогенные стали
Их применяют для получения, хранения и перевозки сжиженных газов: метана, пропана, кислорода (минус 183°С), азота (минус 196°С), водорода (минус 250°С), гелия (минус 269°С) и других газов.

Тугоплавкие металлы и сплавы
К ним относятся хром (tпл=1865°С), ниобий (tпл=2468°С), молибден (tпл=2625°С), тантал (tпл=2996°С), вольфрам (tпл=3422°С), Re (tпл=

Биметаллы и металлокомпозиты
Биметаллы производят заливкой, прокаткой, специальной сваркой, плакированием для придания специальных свойств. Например: Ст 20 покрывают сталью 03Х18Н10Т, стальную проволоку покрывают медью, алюмин

Медь и ее сплавы
  Медь и ее сплавы находят широкое применение в электротехнической промышленности, электронике, приборостроении, плавильном производстве, двигателестроении. Основные сплавы, применяем

Алюминий и его сплавы
Алюминий имеет огромное значение в промышленности из-за высокой пластичности, большой тепло и электропроводности, слабой коррозии, т.к. образующая на поверхности пленка Al2O3

Магний и его сплавы
Магний имеет плотность 1,7 кг/дм³, неаллотропичен плавится при 651°С, кислородоактивен, самовозгорается, пленка МgО хрупкая и растрескивается. Однако магниевые сплавы прочны, поглощают вибраци

Бериллий и его сплавы
  Бериллий имеет плотность 1,86 кг/дм3, температуру плавления 1283 0С, теплопроводен, имеет высокую теплоемкость, малый коэффициент линейного расширения, хорошую

Титан и его сплавы
Плавится титан при температуре 1660°С, аллотропичен, вредные примеси N, C, O, H. Пленка TiO2 защищает титан от окисления, коррозии в любой воде, некоторых кислотах. Он плавится, льется,

Общие вопросы
Порошковая металлургия – это отрасль металлургии, включающая получение порошков металлов, их сплавов, неметаллических материалов и изготовление из них различных изделий. Порошковой металлургией пол

Порошки тугоплавких соединений
Порошки карбидов получаются по реакции:   MeO + C = MeC + CO   Порошки силицидов получают кремний термическим методом в инертной среде или вакууме:

Композиционные материалы и детали из них
Армированные конструкционные материалы – это композиционные материалы (КМ), состоящие из пластичной основы (матрицы) и различных специальных компонентов (порошков, волокон, тонкой стружки). Матрица

Износостойкие материалы
Конструкционные детали, работающие в условиях интенсивного износа - шестерни, звездочки, храповики, кулачки, детали втулочных цепей, детали текстильных машин и т.д. Материалы для их изготовления до

Материалы для конструкций машин
60% порошков расходуется на эту группу изделий: шестерни, звездочки, кулачки, корпуса, кольца, крышки, фланцы, детали замочных механизмов, державки резцов, детали приборов и автоматики и т.д. Этими

Керамико-металлические материалы
Они способны работать при повышенных температурах, напряжениях и скоростях. Керметы подразделяются на группы: оксид-металл, карбид-металл, нитрид-металл, борид-металл. Металлическая матрица объедин

Антифрикционные материалы
А-Фр. материалы используются для изготовления подшипников скольжения, распорных втулок, колец, шайб, подпятников и т.п., вместо дефицитных подшипниковых сплавов из цветных металлов, подшипников ско

Фрикционные материалы
Они идут на изготовление тормозных (фрикционных) устройств, тракторов, автомобилей, авиации и т.д., определяют надежность, долговечность и безопасность. Новые Фр. М. идут на изготовление фрикционны

Магнитные материалы
Магнитные материалы из порошков широко применяются во всех областях науки и техники. Из порошков изготавливаются материалы, которые невозможно получить в процессе плавки. ПММ применяются в

Огнеупорные материалы
Они должны обладать высокими электроизоляционными свойствами, выдерживать высокие температуры, химически не взаимодействовать с металлом, шлаком, газовой средой, электрическими нагревателями.

Термоэлементы
Электронагреватели применяют в различных печах, радио и телевизионной технике, термоэлектродов термопар, термоэлектрических преобразователях энергии, термометрах сопротивления, компенсаторах.

Спеченные электрические контакты
В материалах электрических контактов должны сочетаться свойства: тугоплавкость и высокая твердость, высокие тепло- и электропроводность, высокая коррозионная стойкость, низкое сопротивление, высоки

Сверхтвердые материалы инструментального назначения
К сверхтвердым относятся материалы, твердость и износостойкость которых превышает характеристики карбидо-вольфрамо-кобальтовых сплавов или карбидо-титановых на ни

Твердые сплавы из инструментальной стали
Высокая твердость, износостойкость в сочетании с хорошими физико-механико-химическими свойствами обеспечивает широкое применение порошков нитридов, карбидов, боридов, оксидов, силицидов для изготов

Высокопористые материалы
Высокопористые материалы изготавливаются для фильтров очистки воздуха, газов, жидкостей, масел, топлив, жидких газов, пластмасс, каучука, агрессивных жидкостей, лекарств, расплавов металлов, улавли

Тугоплавкие металлы
К ним относятся элементы IV - VIII групп Периодической системы элементов, представленные в таблице 12. Эти металлы в чистом виде получают методом восстановления оксидов водородом, карбидам

Материалы для атомной энергетики
Атомный реактор состоит из следующих частей: 1) активная зона с тепловыделяющими элементами (ТЭВЛ) и технологические каналы с теплоносителем для удаления тепла. Для ТЭВЛов требуется 235 U,

Ферриты
Это магнитные полупроводники ионного строения на основе окиси железа и часто других металлов (антиферромагнетики или ферромагнетики). Они делятся на: - феррошпинели MgO Al2

Общие вопросы
К неметаллическим материалам относятся: а) полимерные материалы органические и неорганические; б) различные виды пластических масс; в) композиционные материалы на неметал

Полимеры
Полимеры – это вещества, макромолекулы которых состоят из многочисленных элементарных звеньев (мономеров) одинаковой структуры. Молекулярная масса составляет от 500 до 106 единиц. Длина

Пластические массы
Пластические массы производятся на основе полимеров и состоят из: а) связующего вещества (смолы, эфиры, полиэтилены, целлюлозы); б) наполнителей; в) пластификаторов (стеа

Композиционные материалы
В развитых странах композиционные материалы находят все большее применение и практически не существует области техники, где не применялись бы композиты (автостроение, судостроение, строительство, с

Каучуки и резины
Резина это продукт вулканизации смеси каучука и серы с различными добавками, имеющий высокие эластичные свойства; относительное удлинение составляет до 1000 %; высокая стойкость к истиранию, химсто

Клеящие материалы и герметики
Клеи и герметики – это растворы и расплавы полимеров и неорганических веществ, которые наносятся на склеивающиеся поверхности и после высыхания образуют хорошо прилипающие пленки. Клеи и герметики

Неорганическое стекло
Это затвердевший раствор (сложный расплав высокой вязкости) кислотных и основных оксидов. Стеклообразующий каркас стекла образует катион [SiO4]-4 . При частичной замене Si на

Керамические материалы
Керамика – это неорганический материал получаемый в основном из порошков. Они восстанавливаются, смешиваются, формуются, прессуются, обжигаются при температурах 1200-25000 С. Керамика мо

Формообразование изделий из неметаллических материалов
Пластмассы всё больше внедряются в производство вместо металла. Коэффициент использования материала составляет 85-95 %, малая трудоемкость, высокая механизация и автоматизация. При выборе технологи

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги