рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры

Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры - раздел Химия, Строение и свойства металлов и сплавов   Полупроводники Занимают Промежуточное Место По Электрической ...

 

Полупроводники занимают промежуточное место по электрической проводимости между металлическими проводниками и диэлектриками. Электрическое сопротивление металлических проводников с повышением температуры увеличивается, а полупроводников и диэлектриков уменьшается.

Проводники имеют огромное количество свободных электронов, направленное перемещение которых является током проводимости, а в полупроводниках свободных электронов немного. Это объясняется тем, что валентные электроны в полупроводниках связаны со своими атомами, т. е. не являются свободными. Ток в полупроводниках может возникать и изменяться в широких пределах только под влиянием внешних воздействий:
нагревания, облучения или при введении некоторых примесей. Это увеличивает энергию валентных электронов, позволяет им отрываться от своих атомов и под действием приложенного напряжения направленно перемещаться, т. е. становиться носителями тока. Чем выше температура полупроводника или чем интенсивнее его облучение, тем больше в нем свободных электронов и тем больше ток.

Атомы полупроводника, потерявшие электроны, превращаются в положительно заряженные ионы, которые не могут перемещаться. Место на внешней оболочке атома, покинутое электроном, называют дыркой. Эту дырку (вакансию) может занять другой электрон, покинувший свое место в соседнем атоме. В результате на оболочке соседнего атома тоже появится дырка, т. е. он превратится в положительно заряженный ион.

Если к полупроводнику приложить электрическое напряжение, то электроны будут перемещаться от одних атомов к другим в одном направлении, а дырки — в противоположном. Дырку принято считать положительно заряженной частицей с зарядом, равным заряду
электрона. Кажущееся перемещение дырок в направлении, противоположном перемещению электронов, называют дырочным током.

Электропроводности полупроводников, обусловленные движением электронов и дырок, называют соответственно электронной и дырочной. В чистом полупроводнике концентрации электронов Nэ и дырок Nд одинаковы, и электропроводность такого полупроводника называют собственной (рис. 32).

 

 

 
 

Рисунок 32 Схема движения электронов и дырок в полупроводнике собственной электропроводности

 

В этом случае общий ток I складывается из электронного Iэ и дырочного Iд токов:

 

Но так как подвижность электронов больше, чем подвижность дырок, электронный ток больше дырочного.

Для создания полупроводниковых приборов (например, выпрямительных диодов) требуются полупроводниковые материалы, обладающие преимущественно электронной или дырочной электропроводностью. Для получения таких материалов в тщательно очищенный полупроводник вводят соответствующую легирующую примесь.

Легирующие примеси, валентность которых выше валентности полупроводника, снабжают его свободными электронами и называются донорными, или донорами. Примеси, имеющие меньшую валентность, чем
полупроводник, обладают способностью захватывать и удерживать его электроны, на месте которых образуются дырки. Такие примеси называют акцепторными, или акцепторами.

Чтобы получить полупроводник, обладающий только электронной электропроводностью, в него вводят атомы вещества, валентность которого на единицу больше валентности атомов основного полупроводника. Так, в
германий Ge, состоящий из четырех валентных атомов, вводят донорную примесь — сурьму Sb или фосфор Р, состоящую из пятивалентных атомов (рис. 33).

 
 

Рисунок 33 Кристаллическая решетка германия с введенной в него донорной примесью (фосфором)

 
 

Четыре электрона каждого из атомов введенной примеси устанавливают четыре ковалентные (парные) связи с соответствующими атомами полупроводника. Пятый остается без такой связи, следовательно, переходит в свободное состояние и под действием приложенного напряжения принимает участие в образовании электронного тока.

 

Рисунок 34 Схема движения электронов и дырок в полупроводнике с донорной примесью

 

Как видно из рис. 34, основными носителями заряда в полупроводнике с донорной примесью являются электроны, составляющие примесную электропроводность. Две дырки и соответствующие им два электрона образуются в результате ионизации атомов германия. Эти носители заряда обусловливают собственную электропроводность полупроводника. Общий ток в полупроводнике равен сумме электронного и дырочного токов, но
электронный ток во много раз больше дырочного. Такой полупроводник называют электронным, или n-типа.

При введении в германий акцепторной примеси, например бора В, каждый из ее атомов установит три ковалентные связи с соседними атомами германия. Но так как у бора всего три валентных электрона, они могут установить связи только с тремя ближайшими атомами германия. Для связи с четвертым атомом германия атом бора электрона не имеет. Таким образом, несколько атомов германия будут иметь по одному электрону без ковалентной связи. При этом достаточно небольших внешних энергетических воздействий, чтобы эти электроны покинули свои места, образовав дырки у атома германия (рис. 35).

 

 
 

 

Рисунок 35 Кристаллическая решетка германия с введенной в него акцепторной примесью (бором)

 

 

Освободившиеся электроны 2, 4 и 6 атомов германия присоединятся к атомам бора и поэтому не могут создать ток в полупроводнике. Образовавшиеся же у атомов германия дырки 1,3 к 5 позволяют перейти на них электронам от соседних атомов, где, в свою очередь, возникнут новые дырки.

Таким образом, каждая возникающая положительно заряженная дырка будет переходить от одного атома германия к другому, от него — к следующему и т. д. Под действием приложенного напряжения это движение
дырок упорядочится, т. е. в полупроводнике возникнет примесный дырочный ток. Кроме того, в полупроводнике будет небольшое количество пар свободных электронов и дырок, обусловленных его собственной электропроводностью. Общий ток в полупроводнике по-прежнему будет равен сумме электронного и дырочного токов. Такой полупроводник называют дырочным, или р-типа.

 

 
 

Рисунок 36 Схема движения дырок и электронов в полупроводнике с акцепторной примесью

 

Из схемы движения дырок и электронов в полупроводнике с акцепторной примесью (рис. 36) видно, что положительно заряженных частиц (дырок) в нем значительно больше, чем электронов. Таким образом, ясно, что примеси значительно увеличивают электропроводность полупроводников.

Под действием приложенного напряжения электроны и дырки при перемещении в полупроводнике, встречая различного рода препятствия, теряют часть энергии и отклоняются от своего пути, т. е. происходит рассеяние носителей заряда, вызываемое, главным образом, различными загрязняющими примесями. Чем чище полупроводник, тем меньше рассеяние носителей заряда и выше подвижность электронов и дырок, а следовательно, большей удельной проводимостью у обладает
полупроводник.

С ростом температуры проводимость всех полупроводников увеличивается (рис. 37).

 

 

 
 

 


 

 

Рисунок 37 Зависимость удельной проводимости полупроводника от температуры при малой (1) и большой (2) концентрациях легирующей примеси

 

Рисунок 38 Зависимость тока и сопротивления полупроводника от приложенного напряжения

 

 

Происходит это тем интенсивней, чем больше донорной или акцепторной
примеси введено в полупроводник. До температуры Т1 в полупроводнике наблюдается примесная электропроводность, обусловленная движением избыточных зарядов. В интервале температур Т1— Т2 проводимость
полупроводника несколько уменьшается (кривая 1). Это вызвано интенсивными тепловыми колебаниями его атомов, мешающими перемещению свободных электронов или дырок. При дальнейшем же росте
температуры в полупроводнике развивается собственная электропроводность. В связи с этим образуется большое количество новых электронов и дырок, направленное перемещение которых создает все возрастающий ток в полупроводнике, и его удельная проводимость
резко возрастает.

Кривая 2 не показывает уменьшения удельной проводимости высоколегированного полупроводника в интервале температур Т1 — Т2. Это объясняется большим количеством поступающих в полупроводник примесных электронов и дырок. Участие примесных носителей заряда вполне компенсирует возрастание сопротивления полупроводника в этом интервале температур.

При температуре абсолютного нуля ( — 273 °С) электроны не обладают подвижностью, т. е. прочно связаны со своими атомами, вследствие чего полупроводники становятся диэлектриками.

Характерным свойством полупроводников является нелинейность зависимости их тока от приложенного напряжения (рис. 38), т. е. ток растет значительно быстрее, чем напряжение. Одновременно с ростом тока
резко уменьшается электрическое сопротивление полупроводника.

Это свойство используют в вентильных полупроводпиковых разрядниках, присоединяя их к проводам линии электропередачи для защиты от больших токов при ударе молнии. При нормальном напряжении разрядник, обладая очень большим сопротивлением, не пропускает ток с линии электропередачи на землю. При ударе молнии провода находятся под воздействием очень большого напряжения, электрическое сопротивление вентильного разрядника резко уменьшается и он отводит большой ток с линии на землю. В результате напряжение линии электропередачи снижается до нормального значения. Большое сопротивление разрядники восстанавливается и он снова не пропускает ток с линии на землю.

Экспериментально определить характер электропроводности можно двумя способами: с помощью эффекта Холла и термическим способом. Сущность эффекта Холла заключается в том, что при воздействии поперечного постоянного магнитного поля на пластинку материала, вдоль которой перемещаются носители заряда, происходит смещение так, что плотность носителей в поперечном cечении становится неравномерной. В результате этого между боковыми гранями пластинки возникает некоторая разность потенциалов — поперечная э. д. с. Холла. В зависимости от типа электропроводности меняется направление поперечной э. д. с. (рис. 39).

 

 
 

Рисунок 39 Метод определения типа электропроводности полупроводников при помощи эффекта Холла

 

Термический способ, заключается в следующем, нагревании конца пластинки из полупроводникового материала с электропроводностью типа р горячий конец с температурой tг будет заряжен положительно по сравнению с холодным концом, имеющим температуру tx. При соединении обоих концов проводниковой цепью в ней обнаружится ток соответствующего направления. При электропроводности пластинки типа n горячий конец будет заряжен отрицательно по сравнению с холодным концом, что отразится на направлении тока в электрической цепи, соединяющей оба конца (рис. 40).

 
 

 

 

Рисунок 40 Термический метод определения типа электропроводности полупроводников

«Полупроводниковые материалы»

Среди большого количества полупроводниковых материалов неорганического и органического происхождения монокристаллической и поликристаллической структуры в электротехнике используют в основном
германий, кремний, селен и карбид кремния, из которых изготовляют полупроводниковые приборы.

Кремний и германий относятся к алмазоподобным полупроводникам, так как они имеют кристаллическую структуру алмаза (рис. 41) —куб, в вершинах и в центрах граней которого расположены атомы углерода. Кроме того, атомы углерода находятся в центрах четырех (из восьми) малых кубов
(октантов), на которые делится большой куб.

 

 
 

Рисунок 41 Кристаллическая структура алмазного типа

 

Германий Ge—элемент четвертой группы периодической системы Менделеева. Исходными сырьевыми материалами для получения германия служат цинковые и сульфидные руды. В результате сложных химических
процессов получают слиток германия, который еще нельзя применять для изготовления полупроводниковых приборов, так как он содержит примеси и не является монокристаллом. Сначала этот слиток методом зонной плавки освобождают от примесей, которые в очищенном германии должны составлять не более 5 ·10 - 9 %.

Чтобы получить монокристаллический германий, его расплавляют в вакууме или атмосфере инертного газа. Для получения германия электропроводностью n- или p типа в расплав очищенного германия вводят соответственно донорную или акцепторную примесь. Затем из расплава вытягивают с определенной скоростью чистый монокристаллический германий в виде сплошного цилиндра заданного диаметра.

Германий имеет ярко-серебристый цвет, его плотность 5322 кг/м3, а температура плавления 937,2 °С. Все сорта германия обладают большой твердостью и хрупкостью и легко увлажняются.

Германий широко применяют для изготовления диодов и фотоэлементов.

Кремний Si является элементом четвертой группы периодической системы Менделеева. Широко распространенный в природе в виде кремнезема Si02 служит одним из исходных веществ для получения технических сортов кремния.

В результате очистки слитков кремния методом зонной плавки получают в зависимости от введенных легирующих примесей монокристаллический кремний электропроводностью n- или р-типа. В очищенном кремнии примеси должны составлять не более 10 -11 %.

Образцы полированного кремния имеют цвет стали. Кремний, как и германий, представляет собой хрупкий материал. Основные характеристики очищенного нелегированного кремния: плотность 2320 кг/м3, темпера-
тура плавления 1420 °С.

Кремний применяют более широко, чем германий, так как верхний предел рабочей температуры полупроводниковых приборов на его основе 150 — 200 °С, а на основе германия 70—80 °С. Кремний используют в производстве интегральных микросхем.

Селен Se — элемент шестой группы периодической системы Менделеева. Исходными материалами для его получения являются остатки, образующиеся при электролитическом рафинировании меди. Твердый селен может иметь аморфное или кристаллическое строение. Черный аморфный селен, получаемый из очищенного расплавленного селена при быстром охлаждении его до комнатной температуры, представляет собой диэлектрик с удельным сопротивлением р=10-11 Ом-м.

Серый кристаллический селен получают из расплавленного аморфного селена при медленном охлаждении его от температуры плавления (220 °С) до комнатной. Кристаллический селен является примесным полупроводником р-типа, имеющим поликристаллическую структуру. Основные характеристики селена: плотность 4800 кг/м3, температура плавления 217 °С, Интервал рабочих температур селена в выпрямителях от — 60 до 75 °С.

Селен применяют для изготовления селеновых выпрямителей, фотоэлементов и фоторезисторов.

Карбид кремния SiC представляет собой хрупкий материал поликристаллического строения с ярко выраженной нелинейной зависимостью между током и напряжением. Карбид кремния образуется в результате химического соединения кремния и углерода. Исходными материалами для его получения являются чистый кварцевый песок и кокс. Чтобы получить примесную электрическую проводимость того или другого типа, в исходный состав (шихту) вводят примеси — фосфор, сурьму, висмут, магний, алюминий и др.
Реакция образования карбида кремния ведется при конечной температуре приблизительно 2000 °С.

Карбид кремния, легированный фосфором, сурьмой или висмутом, имеет темно-зеленую окраску и обладает электропроводностью n-типа, а легированный галлием, алюминием или бором, имеет темно-фиолетовую окраску и обладает электрической проводимостью р-типа. Основные характеристики карбида кремния: плотность 3200 кг/м3, температура плавления 2700 °С. Как и кристаллический селен, карбид кремния является примесным полупроводником, но при температуре 1400 °С и выше у него
появляется собственная электропроводность.

В основном наиболее чистые сорта карбида кремния применяют в производстве варисторов — резисторов, обладающих нелинейной симметричной вольт-амперной характеристикой и работающих в интервале температур от —50 до +80 °С. Варисторы используют в устройствах автоматического регулирования.

Из поликристаллического карбида кремния методом возгонки в инертном газе получают монокристаллы карбида кремния, отличающиеся химической чистотой, которые широко используют для изготовления диодов и транзисторов на рабочие температуры до 700 °С, а также для производства светодиодов.

 

– Конец работы –

Эта тема принадлежит разделу:

Строение и свойства металлов и сплавов

Тема Введение Строение и свойства металлов и сплавов... Материаловедением называется наука о структуре и свойствах материалов...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 4.1 Основные свойства полупроводниковых материалов. Полупроводниковые материалы и их параметры

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тема 1.2 Сплавы железа с углеродом
  К железоуглеродистым сплавам относятся стали и чугуны. Основными элементами, от которых зависят структура и свойства сталей и чугунов, являются железо и углерод. Железо мож

Тема 1. 3 Основы термической и химико – термической обработки металлов
Термической обработкой называют процессы теплового воздей­ствия по определенным режимам с целью изменения структуры и свойств сплава. От термической обработки зависит качество и стой­кость в работе

Тема 1.4 Цветные металлы и их сплавы
  «Сплавы на медной основе» В технике используют сплавы меди с цинком, оловом, алюминием, бериллием, кремнием, марганцем, никелем, свинцом. Легирование меди обеспечивает повы

Тема 2.1 Электротехнические характеристики проводниковых материалов
  «Проводниковые материалы высокой проводимости» Металлические проводниковые материалы имеют поликристаллическое строение, т. е. состоят из множе­ства мелких кристалликов. Бо

Тема 2.2 Сортамент проводов
  Провода мо­гут быть неизолирован­ными и изолированными, с покрытием из резины, пластмасс и др. Неизолированные провода применяют на ЛЭП. По роду материала различают медь (М), алюмин

Тема 3.1 Физика диэлектриков
Диэлектрики - вещества, способные поляризоваться и сохра­нять электростатическое поле. Это широкий класс электротехниче­ских материалов: газообразных, жидких и твердых, природных и

Тема 3.2 Механические, тепловые и физико – химические характеристики диэлектриков
Поскольку детали из электроизоляционных материалов подвергаются воздействию механических нагрузок, большое практическое значение имеют механическая прочность этих материалов и способность их не деф

Тема 3.3 Газообразные диэлектрики
Воздух используется практически в подавляющем большинстве электротехнических машин, аппаратов, трансформаторов и приборов, даже в устройствах, заполненных жидким диэлектриком. Так, маслонаполненный

Природные смолы.
К природным (естественным) смолам принадлежат продукты жизнедеятельности животных или растительных организмов. Из естественных смол в производстве электроизоляционных лаков и компа

Шеллак.
Шеллак получают из гуммилака, представляющего собой смолу, образующуюся на ветвях тропических растений вследствие укуса особого насекомого, которое, перерабатывая сок в своем организме, выделяет ег

Копалы.
Копалы представляют собой смолы, обычно ископаемые, растительного происхождения, добываемые главным образом в тропических странах, и обозначаются географическими названиями мест, где они добываются

Твердые органические диэлектрики.
К органическим диэлектрикам относятся материалы, в составекоторых находится углерод. В качестве добываемые преимущественно в Африке и Юго-Восточной Азии. Раньше благодаря растворимости в растительн

Полимеризационные синтетические полимеры
Полимеризационные синтетические полимеры получают в процессе полимеризации под действием теплоты, давления, ультрафиолетовых лучей, а также инициаторов и катализаторов. При полимеризации двойные и

Поликонденсационные синтетические полимеры.
В реакции поликонденсации участвуют не менее двух химических веществ. В результате образуются полимеры пространственной структуры, из которых получают прочные и теплостойкие термореактивные материа

Тема 3.6 Пластмассы, пленочные материалы
«Пластмассы» Пластмассами называются материалы, из которых благодаря их пластичности или текучести в стадии технологической переработки получают изделия (детали) более или

Тема 3.7 Резины
  Характерное свойство всех резин – большая эластичность, то есть способность значительно удлиняться при растяжении без остаточного удлинения после снятия растягивающей нагрузки. Имею

Тема 3.8 Лаки, эмали, компаунды
  Лаки представляют собой коллоидные растворы (состоят из некристаллизующихся частичек) каких-либо пленкообразующих веществ в специально подобранных органических растворителях.

Тема 3.9 Волокнистые диэлектрики
  «Бумаги и картоны» Сырьем для изготовления различных электроизоляционных бумаг и картонов является целлюлоза или клетчатка, получаемая химической переработ

Тема 3.10 Электроизоляционная слюда и материалы на ее основе
  Слюда — природный минерал характерного слоистого строения, что позволяет расщеплять ее кристаллы на листочки толщиной до 0,006 мм. Тонкие листочки слюды обладают гибкостью, упруги и

Тема 5.1 Основные характеристики магнитных материалов
Материалы, которые под действием внешнего магнитного поля намагничиваются, т. е. приобретают особые магнитные свойства, называют магнитными. Основными магнитными материалами являются желез

Тема 6.1 Сварка, пайка металлов. Припои и флюсы
  Сваркой называют технологический процесс получения неразъемных соединений заготовок посредством установления меж­атомных и межмолекулярных связей между свариваемыми частями, что воз

Тема 6.2 Виды обработки металлов и неметаллических материалов
  Литейное производство — процесс получения фасонных отливок путем заполнения жидким металлом заранее приготовлен­ных форм, в которых металл затвердевает. Отливки могут быть

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги