Лабораторная работа №6

"Определение железа(II) и железа(III) при совместном присутствии с применением редуктора"

 

Прямым титрование перманганатом калия можно определить лишь Fе2+, выступающего в качестве восстановителя:

 

5Fе2+ + KМnO4 + 4Н24 = 5Fе3+ + MnSO4 + 4Н2О + K+

раб. р-р

fэкв(Fе2+) = 1, fэкв(KМnO4) = 1/5

 

При титровании железа (II) раствором перманганата калия возможно протекание побочной «сопряженной» реакции между хлорид-ионами и перманганатом калия с выделением свободного хлора (Еº(Сl2/ 2Сl) = 1,36 В):

 

10Сl + MnO4 + 8Н+ = Mn2+ + 5Сl2↑ + 4Н2О

 

При комнатной температуре во многих случаях эта реакция с заметной скоростью не идет. Однако в присутствии ионов Fе2+ она каталитически ускоряется (индуцируется). Образовавшийся хлор реагирует с ионами железа (II), но частично он улетучивается, что приводит к повышенному расходу перманганата калия.

Для уменьшения погрешности определения в титруемый раствор перед началом титрования добавляют "защитную смесь" Рейнгарда − Циммермана (Н3РО4, Н24 и MnSO4). Серная кислота нужна для повышения кислотности. Фосфорная кислота связывает в бесцветный комплекс ионы Fе3+, придающие раствору желтую окраску и затрудняющие наблюдение избытка перманганата в конце титрования. Ионы Мn2+ устраняют образование промежуточных соединений, участвующих в окислении хлорид-ионов.

Для определения содержащихся в анализируемом растворе ионов Fе3+ перманганатом калия необходимо предварительно восстановить их до Fе2+. Это можно осуществить с помощью редуктора, заполненного амальгамированным цинком:

 

2Fе3+ + Zn0 → 2Fe2+ + Zn2+

 

Амальгамированный цинк проявляет гораздо меньшую восстановительную способность катионов водорода в кислых растворах. Для амальгамирования цинка его гранулы обрабатывают раствором нитрата ртути(II). В результате реакции: Zn0 + Hg2+ → Zn2+ + Hg0 каждая гранула цинка покрывается слоем элементарной ртути:

 

Hg0 + Zn2+ + 2ē → Zn(Hg).

Подготовка редуктора

Осуществляется в случае необходимости. В качестве редуктора используют делительную воронку, частично заполненную амальгамированным цинком. Редуктор с цинком дважды промывают раствором серной кислоты в разбавлении 1: 25 порциями по 10 мл. Каждый раз верхний штуцер делительной воронки закрывают пробкой, и смесь цинка с кислотой встряхивают. Промывной раствор отбрасывают в стакан для слива. При сливе промывной кислоты через кран редуктора следует соблюдать все меры предосторожности при работе с кислотами! Верхний штуцер делительной воронки при этом должен быть открыт.

Методика анализа

Полученную задачу в мерной колбе доводят до метки дистиллированной водой и тщательно перемешивают.

Аликвотную часть задачи переносят пипеткой в редуктор. Пробку редуктора тщательно закрывают и встряхивают редуктор с раствором задачи в течение ~ 5 мин. (до обесцвечивания раствора). При встряхивании кран пробку редуктора следует крепко придерживать обеими руками во избежание потери раствора задачи. По окончании восстановления трехвалентного железа пробку редуктора открывают и пробу аккуратно сливают в колбу для титрования через кран делительной воронки. Кран закрывают и дважды промывают редуктор раствором разбавленной (1:25) серной кислоты, добавляя ее порциями по 10 мл (поверхность цинка должна быть полностью закрыта). Каждую порцию промывного раствора добавляют в колбу для титрования. При работе с кислотой необходимо соблюдать все меры предосторожности! Затем в колбу для титрования с помощью цилиндра отмеряют 5 мл защитной смеси и титруют анализируемый раствор рабочим раствором КМnО4 до появления неисчезающей бледно-розовой окраски раствора от одной капли рабочего раствора. Полученный результат V1(КМnО4), мл − записывают в рабочую тетрадь. Титрование суммарного содержания железа проделывают дважды и вычисляют средний результат.

Другую аликвотную часть задачи сразу переносят пипеткой в колбу для титрования, добавляют с помощью цилиндра 5 мл защитной смеси и титруют двухвалентное железо рабочим раствором КМnО4 до появления устойчивого бледно-розового окрашивания от одной капли КМnО4. Результат V2(КмnО4), мл − записывают в рабочую тетрадь. Титрование двухвалентного железа проводят дважды и вычисляют средний результат.

По результатам титрования с учетом аликвотной части раствора и закона эквивалентов рассчитывают массу двух- и трехвалентного железа:

 

V2(КМnО4) · N(1/5 КМnО4)

m(Fе2+) = 10 · ------------------------------- · Мэ(Fе)


[V1(КМnО4) − V2(КМnО4)] · N(1/5 КМnО4)

m(Fе3+) = 10 · --------------------------------------------------- · Мэ(Fе)

 

3.3. ЙОДОМЕТРИЯ

 

Рабочим раствором метода является раствор молекулярного йода I2 в йодиде калия, который увеличивает растворимость йода в воде:

 

I2 + I = I3

 

трийодид ион

Трийодид-ион является окислителем средней силы, который количественно реагирует со многими восстановителями.

Трийодид-ион и молекулярный йод в окислительно-восстановительных процессах ведут себя аналогично, поэтому при составлении уравнений реакций, пренебрегают присутствием в растворе I3, рассматривая лишь I2. В основе йодометрического определения лежит полуреакция:

 

I2 + 2ē → 2IЕº(I2/2I) = 0,535В

fэкв(I2) = ½

 

Раствор йода готовят из навески приблизительной концентрации. Его точную концентрацию можно определить двумя способами: по навеске стандартного вещества оксида мышьяка (III) − способом прямого титрования, или с помощью второго рабочего раствора Nа2S2О3 − способом обратного титрования.

Многие восстановители, такие как тиосульфаты, сульфиды, арсениты и др., титруют стандартным раствором йода. Часто прямое титрование невозможно по причине каталитического ускорения реакции окисления определяемого восстановителя кислородом воздуха. В этом случае прибегают к обратному титрованию: к раствору восстановителя добавляют избыток рабочего раствора йода, а его непрореагировавший остаток титруют вторым рабочим раствором тиосульфата натрия Nа2S2О3.

Сильные окислители определяют заместительным титрованием: к анализируемому раствору добавляют в избытке йодид калия и, если нужно, кислоту. При этом выделяется молекулярный йод в количестве, стехиометричном окислителю. Образовавшийся йод (заместитель) титруют рабочим раствором тиосульфата натрия. Прямое титрование сильных окислителей раствором Nа2S2О3 невозможно из-за образования разнообразных продуктов окисления.

Реакция йода с тиосульфатом имеет широкое применение в йодометрии:

 

I2 + Nа2S2О3 → 2NаI + Nа2S4О6

 

Она протекает быстро и стехиометрично при комнатной температуре в слабокислой среде или при рН < 9. При титровании сильнокислых растворов требуется интенсивное перемешивание, чтобы избежать разложения тиосульфата с образованием сернистой кислоты, которая реагирует с йодом, нарушая стехиометричность. В сильнощелочной среде протекают другие побочные реакции:

 

I2 + 2NаОН → NаIО + NаI + Н2О;

3NаIО → NаIО3 + 2NаI;

2S2О3 + 4I2 + 10NаОН → 2Nа24 + 8NаI + 5Н2О,

 

которые искажают результаты титрования.

Раствор тиосульфата натрия точно заданной концентрации нельзя приготовить путем растворения навески промышленного препарата Nа2S2О3 ∙ 5Н2О в мерной колбе. Состав препарата не отвечает точно указанной формуле, кроме того, свежеприготовленный раствор нестабилен. Основной причиной изменения его концентрации является деятельность тионовых бактерий, она усиливается при повышенной температуре и освещении. Наряду с этим тиосульфат натрия медленно реагирует с растворенной углекислотой и на свету − с кислородом воздуха:

 

2S2О3 + Н2О + СО2 → NаНСО3 + NаНSО3 + S↓

2Nа2S2О3 + О2 → 2Nа24 + S↓

 

Свежеприготовленный раствор тиосульфата натрия стерилизуют добавлением небольших количеств НgI2, хлороформа или амилового спирта, подщелачивают добавлением соды, защищают от света и выдерживают в течение 7-10 дней. Если раствор не стал мутным, то он устойчив и его стандартизуют.

Стандартизацию раствора тиосульфата натрия проводят с помощью стандартного вещества К2Сr2О7. При избытке КI и кислоты бихромат калия замещается стехиометричным количеством молекулярного йода q(К2Сr2О7) = q(I2) , который затем титруют тиосульфатом натрия q(I2) = q(Nа2S2О3) и, следовательно, q(Nа2S2О3) = q(К2Сr2О7).

Реакция замещения протекает медленно, для ее ускорения берут значительный избыток реагентов. Выделившийся йод мало растворим в воде, но при избытке йодид-ионов образуется более растворимое соединение трийдид-ион, понижающий упругость паров йода (его летучесть).

Окраска раствора йода при малой концентрации недостаточно интенсивна для точного определения конца титрования. В качестве чувствительного индикатора применяют свежеприготовленный коллоидный раствор крахмала, который образует с молекулярным йодом адсорбционное соединение интенсивно-синего цвета. При титровании йода тиосульфатом индикатор вводят в конце титрования, когда концентрация йода мала. Адсорбционное соединение, образующееся при большой концентрации йода, медленно реагирует с тиосульфат-ионом и это приводит к повышенному расходу тиосульфата натрия. Стандартный раствор тиосульфата натрия проверяют каждые 1-2 месяца.

 

3.4. Стандартизация раствора тиосульфата натрия

 

В основе определения лежат следующие реакции:

 

K2Cr2O7 + 6KI + 7H2SO4 = Cr2(SO4)3 + 4K2SO4 + 7H2O + 3I2

станд. в-во

I2 + 2Na2S2O3 = Na2S4O6 + 2NaI

раб.р-р

 

По уравнению реакции: n(Na2S2O3) = 6n(K2Cr2O7) = n(1/6 K2Cr2O7)

Раствор бихромата калия Eº(Cr2O72−/2Cr3+) = 1.33 В готовят по точной навеске в мерной колбе. Расчет интервала навески проводят согласно методике (см.раздел 2.2.1) исходя из приблизительной концентрации раствора Na2S2O3 = 0,05 мг-экв/мл.

Методика анализа

В колбу для титрования помещают 1 г йодистого калия, цилиндром отмеряют 5 мл 4 н серной кислоты и отмеряют пипеткой аликвотную часть приготовленного раствора бихромата калия.

Смесь в колбе для титрования перемешивают круговыми движениями до растворения йодида калия и для завершения реакции помещают на 5 мин в темное место.

Затем выделившийся йод титруют раствором тиосульфата натрия до получения светло-желтой (соломенной) окраски, к раствору добавляют пипетку раствора крахмала и продолжают титрование до исчезновения синей окраски.

По результатам трех титрований вычисляют средний объем Vср(Nа2S2О3), мл и вычисляют концентрацию раствора. Стандартизованный раствор тиосульфата натрия используют для определения точной концентрации рабочего раствора йода.

 

3.5. Стандартизация раствора йода

 

В основе определения лежит реакция:

 

I2 + 2Na2S2O3 = Na2S4O6 + 2NaI

раб.р-р 2-ой раб.р-р

По закону эквивалентов: q(I2) = q(Nа2S2О3)

Методика анализа

В колбу для титрования из бюретки последовательно отмеряют 4,0; 5,0 и 6,0 мл раствора йода и титруют стандартизованным раствором тиосульфата натрия до появления светло-желтого окрашивания раствора, затем добавляют пипетку раствора крахмала и продолжают титрование до исчезновения синей окраски.

На основании полученных результатов по закону эквивалентов рассчитывают концентрацию раствора йода:

N(Nа2S2О3) V(Nа2S2О3) = N(I2) V(I2)