Бериллий

 

Во всех устойчивых соединениях степень окисления бериллия +2.

Содержание бериллия в земной коре невелико. Важнейшие минералы: берилл Be3Al2(SiO3)6, фенакит Be2SiO4; окрашенные примесями прозрачные разновидности берилла (зеленые изумруды, голубые аквамарины и др.) – драгоценные камни (в настоящее время их получают искусственно).

Соединения бериллия ядовиты.

Простое вещество. Be (бериллий) – светло-серый, легкий, достаточно твердый, хрупкий металл. На воздухе покрывается оксидной пленкой. Пассивируется в холодной воде, концентрированных серной и азотной кислотах. Восстановитель, реагирует с кипящей водой, разбавленными кислотами, концентрированными щелочами, неметаллами, аммиаком, оксидами металлов, при нагревании сгорает в кислороде и на воздухе. С металлами бериллий образует интерметаллические соединения. Бериллиды ряда d-элементов состава MBe12 (М – Ti, Nb, Та, Mo), МВе11 (М = Nb, Та) и другие имеют высокую температуру плавления и не окисляются при нагревании до 1200–1600°С.

2Be + 3H2O(кип.) = BeO↓ + Be(OH)2↓ + 2H2

Be + 2HCl(разб.) = BeCl2 + H2

Be + 2HNO3(разб., гор.) = Be(NO3)2 + 2NO↑ + 4H2O

Be + 2NaOH(конц.) + H2O = Na2[Be(OH)4] + H2

2Be + O2(900°С) = 2BeO

Be + Hal2(нагр.) = 2BeHal2

3Be + C2H2 = BeC2 + H2

Be + MgO = BeO + Mg

Получение и применение.Бериллий получают электролизом расплава ВеСl2 (с добавкой NaCl при 300°С) или магнийтермическим восстановлением ВеНаl2.

Бериллий используют в качестве легирующей добавки к сплавам, придающей им повышенную коррозионную стойкость, высокую проч­ность и твердость. Наиболее ценны сплавы Cu–Be (бериллиевые брон­зы), содержащие до 2,5% Be. Сплавы бериллия применяют в самолетостроении, электротехнике и др.

В атомных реакторах бериллий используется как замедлитель и отражатель нейтронов. В смеси с препаратами радия он служит источ­ником нейтронов, образующихся при действии на 9Ве альфа-частиц: 9Ве + 4Не = 12С + 1n.

Соединения бериллия (II). Большинство неорганических соедине­ний бериллия (II) в обычных условиях полимерны и являются крис­таллическими веществами белого цвета. В кислых водных растворах ионы Ве2+ находятся в виде прочных аква-комплексов [Ве(Н2О)4]2+; в сильно щелочных растворах – в виде ионов [Ве(ОН)4]2–.

Оксид ВеО – амфолит, при сплавлении взаимодействует и с основными, и с кислотными оксидами:

ВеО + SiО2 = BeSiО3; ВеО + Na2О = Na2BeО2

При нагревании ВеО взаимодействует со щелочами и кислотами:

ВеО + 2HCl(конц.) = BeCl2

ВеО + 2NaОН + Н2О = Na2[Ве(ОН)4]

ВеО применяют в качестве химически стойкого и огнеупорного материала для изготовления тиглей и специальной керамики, а в атомной энергетике – как замедлитель и отражатель нейтронов.

Гидроксид Ве(ОН)2 – полимерное соединение, и поэтому в воде не растворяется, амфолит.

Ве(ОН)2 + 2NaОН(конц.) = Na2[Ве(ОН)4]

ВеО + 2HCl + 3Н2О = [Ве(Н2О)4]Cl2

Амфотерностъ ВеНа12 наиболее отчетливо проявляется у фторида. Так, при нагревании BeF2 с основными фторидами образуются фторобериллаты (другие галогенобериллаты не характерны): 2KF + BeF2 = K2[BeF4]

При взаимодействии BeF2 с кислотными фторидами образуются соли бериллия:

BeF2 + SiF4 = Be[SiF6]

Гидрид ВеН2 – сильный восстановитель; при его разложении водой выделяется водород: ВеН2 + 2Н2О = Ве(ОН)2↓ + Н2

Большинство солей бериллия растворимо в воде, нераствори­мы ВеСО3, Ве3(РО4)2 и некоторые другие. Для бериллия весьма ха­рактерны двойные соли – бериллаты со сложными лигандами, например:

Na24 + BeSО4 = Na2[Be(SО4)2]

(NH4)23 + BeCО3 = (NH4)2[Be(CО3)2]