Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональный тест на аллелизм (цис-транс тест).

В 1929 - 1930 гг. в нашей стране в работах А. С. Серебровского и его молодых сотрудников - Н. П. Дубинина, Б. Н. Сидорова и других - была впервые экспериментально показана функциональная сложность гена. Авторы исследовали у дрозофилы серию множественных аллелей фокуса scute, локализованного в нулевой точке половой хромосомы. Мутации этого локуса и другие обусловливают редукцию разных щетинок на теле мухи. При скрещивании особей sc1││sc1 и sc2││sc2, у гетерозигот sc1││sc2, как правило, отсутствовали лишь те щетинки, которые были редуцированы у обеих гомозигот. Так, например, если одна мутация sc1 вызывала редукцию щетинок АВС, а другая — редукцию щетинок DСР, то у гетерозиготы, отсутствовали щетинки В и С, а щетинки А и D имелись. Создавалось впечатление, что в данном случае речь идет о частичной гетерозиготности, когда части мутантных аллелей, которые обусловливают одинаковый фенотипический эффект, оказываются в гомозиготном состоянии. Поэтому описанное явление получило название ступенчатого аллелизма. Псевдоаллелизм. Представление о гене как единице, далее не делимой кроссинговером, подразумевало, что при гаметогенезе у компаундов, т.е. зигот, несущих две аллели одной серии (а1││а2) могут образовываться гаметы только двух типов – а1 и а2. При возвратном скрещивании таких особей с любой из родительских форм возможно появление только мутантных форм: а1││а2 х а1││а1→ а1││а1 : а1││а2 Действительно, это и наблюдается при исследовании ограниченной выборки потомков от возвратного скрещивания. Однако если выборку увеличить, например, до l00 тыс. и более особей, то в ней окажутся и потомки дикого типа. Такие особи могли появиться только при двух условиях: мутация затрагивает часть гена дикого типа и между частями гена может происходить кроссинговер. Явление это было открыто Е. Льюисом и другими при изучении ряда генов у дрозофилы. Существование такого явления противоречило представлению о гене как единице, далее неделимой при кроссинговере. Однако трудно было сразу отказаться от традиционных представлений, и об аллелях, делимых при кроссинговере, стали говорить как о псевдоаллеллх. Псевдоаллелизм распространен весьма широко. Он был продемонстрирован на разнообразных организмах: аспергилле, нейроспоре, дрожжах, хлопчатнике, кукурузе, шелкопряде, дрозофиле, голубях, мышах, норках и многих других объектах. Исходя из того, что ген, согласно современным данным, представляет собой сложную линейную структуру, а мутации могут затрагивать различные его участки, были сделаны попытки модернизировать моргановский функциональный критерий аллелизма. Цис-транс-тест на аллелизм. Льюис предложил цис-транс-тест на аллелизм. Смысл этого теста сводится к тому, что при скрещивании двух мутантных особей возникает зигота с транс-конфигурацисй этих мутаций. Если мутации комплементарны, т. е. появляется гибрид дикого типа, то мутации относят к разным генам. Если гибрид оказывается мутантным, то обе мутации относят к одному гену, т. е. считают их аллельными. При скрещивании двух особей, одна из которых несет две мутации, а другая представляет собой дикий тип, образуется зигота с цис- конфигурацией мутаций. В этом случае гибрид дикого типа возникает и тогда, когда обе мутации произошли в одном гене, и тогда, когда мутантными оказываются два разных гена.

45. Исследование тонкой структуры гена на примере фага Т4 (Бензер). Ген как единица функции (цистрон). Явление межаллельной комплементации, относительность критериев аллелизма.

Классической работой, показавшей пределы мутационной и рекомбинационной делимости гена, стало исследование фага Т4, инфицирующего бактерию E. coli, проведенное в конце 50-х годов С. Бензером. Он изучал мутантные формы r II.

Штамм E. coli Поведение мутантного фага r II
E. coli В Образуют более крупные стерильные пятна по сравнению с фагом дикого типа.
E. coli S Образуют стерильные пятна, не отличимые от пятен, образуемых фагом дикого типа.
E. coli К 12, лизогенная по фагу λ Не могут размножаться в клетках этого штамма.

Взаимоотношения мутантов r II c различными штаммами E. сoli создают возможности для: выращивания только ревентантов и рекомбинантов r+ (на штамме E. coli К 12(λ) ), одновременного исследования мутантов r II и фагов дикого типа r+ (на штамме E. coli В), размножения r II и фагов дикого типа r+ (на штамме E. coli S). При заражении бактериальной клетки двумя фаговыми частицами между их геномами возникают связи, как между гомологичными хромосомами диплоида. При этом признаки фага дикого типа доминируют – образуются стерильные пятна стандартного типа на штаммах В и К 12 (λ). Т.о., возможно проведение функционального теста на аллелизм. Локус r II был разбит на два функционально самостоятельных участка гена, или как их назвал Бензер, цистрона А и В. Функц-о самост. участки гена были названы цистронами. Цистрон представляет собой участок хромосомы, мутация в пределах которого обнаруживается в транс-положении. Понятие «ген» в функциональном отношении шире понятия «цистрон». Цистрон — участок ДНК, кодирующий первичную структуру одной полипептидной цепи или одной молекулы РНК (р-РНК или т-РНК). Ген же — участок ДНК, кодирующий первичную структуру одной молекулы белка, независимо от того, состоит он из одной субъединицы (в этом смысле понятия «ген» и «цистрон» совпадают) или из нескольких (И. П. Ашмарин, 1977)'. Бензер попытался дать конкретное выражение размеров цистрона. Исходя из того, что вся ДНК фага содержит 4.10~ нуклеотидов и 40 Щ из них составляют генетический материал, он установил, что каждая функциональная единица включает несколько сотен пар нуклеотидов: ген гПЛ — 800, rllB — 1500. Межаллельная комплементация. Это редкий вид взаимодействия аллельных генов, при котором у организма, гетерозиготного по двум мутантным аллелям гена М (М1М11), возможно формирование нормального признака М. Например, ген М отвечает за синтез белка, имеющего четвертичную структуру и состоящего из нескольких одинаковых полипептидных цепей. Мутантный аллель М1 вызывает синтез измененного пептида М1, а мутантный аллель М11 определяет синтез другой, но тоже ненормальной полипептидной цепи. Взаимодействие таких измененных пептидов и компенсация измененных участков при формировании четвертичной структуры в редких случаях может привести к появлению белка с нормальными свойствами. Наследование групп крови системы АВО Наследование групп крови системы АВО у человека имеет некоторые особенности. Формирование I, II и III групп крови происходит по такому типу взаимодействия аллельных генов, как доминирование. Генотипы, содержащие аллель IA в гомозиготном состоянии, либо в сочетании с аллелем IO, определяют формирование у человека второй (А) группы крови. Тот же принцип лежит в основе формирования третьей (В) группы крови, т. е. аллели IA и IB выступают как доминантные по отношению к аллелю IO, в гомозиготном состоянии формирующему IOIO первую (О) группу крови. Формирование четвертой (АВ) группы крови идет по пути кодоминирования. Аллели IA и IB, по отдельности формирующие соответственно вторую и третью группу крови, в гетерозиготном состоянии определяют IAIB (четвертую) группу крови.