рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

СКЛАДЧАТЫЕ НАРУШЕНИЯ

СКЛАДЧАТЫЕ НАРУШЕНИЯ - раздел Геология, ОБЩАЯ ГЕОЛОГИЯ Наблюдая Толщи Горных Пород, Смятые В Складки, Кажется, Что Формы Складок Бес...

Наблюдая толщи горных пород, смятые в складки, кажется, что формы складок бесконечно разнообразны. На самом деле их можно свести к нескольким основным типам и легко различать в кажущемся хаосе различных по форме и по размерам складок (рис. 37-39 на цвет­ной вклейке).

Два типа складок являются главными: антиклинальная и синкли­нальная (рис. 17.9). Первая складка характеризуется тем, что в ее цен­тральной части, или ядре, залегают более древние породы; во второй — более молодые. Эти определения не меняются, даже если складки на­клонить, положить на бок или перевернуть.

У каждой складки существуют определенные элементы, описываемые всеми геологами одинаково: крыло складки, угол при вершине складки, ядро, свод, осевая поверхность, ось и шарнир складки (рис. 17.10, 17.11).

Рис. 17.10. Основные элементы складки: 1 — крыло складки; 2 — осевая поверхность складки; 3 — угол при вершине складки; 4 — ось складки (линия пересечения осевой поверхности с горизонтальной плоскостью); 5 — шарнирная линия складки; 6 — замок складки

 

 

Рис. 17.11. Соотношение между осевой поверхностью складки (1), осью складки (2) и шарнирной линией складки (3). При наклонном положении складки ось и шарнирная линия в пространстве не совпадают


С помощью этих понятий, обозначающих разные части (элементы) складок, их легко классифицировать. Например, характер наклона осе­вой поверхности складки позволяет выделять следующие виды скла­док: 1) прямые, 2) наклонные, 3) опрокинутые, 4) лежачие, 5) ныряю­щие (рис. 17.12).

Рис. 17.12. Классификация складок по наклону осевой поверхности и крыльев (складки изображены в поперечном разрезе). Складки: 1 — прямая, 2 — наклонная, 3 — опрокинутая, 4 — лежачая, 5 — ныряющая

 

Особенно интересны складки с разными по форме сводами. Нередко можно наблюдать складки «острые», напоминающие зубья пилы, или, на­оборот, с очень плавными, округлыми сводами (рис. 17.13). В Горном Даге­стане широко распространены крупные складки, называемые «сундучны­ми» и «корытообразными». Они сложены толщами плотных известняков, изогнутых вверх наподобие сундуков и вниз — корыт. На обрывистом краю одной такой сундучной складки располагается знаменитый аул Гуниб, пос­ледний оплот восставшего Шамиля.


 

А/Щ1Я

6 * 7 8

Рис. 17.13. Типы складок по форме замка: 1 — острые, 2 — округлые, 3 — сундуч­ные, 4 — корытообразные; по углу при вершине складки: 5 — открытые, 6 — закры­тые, 7 — изоклинальные, 8 — веерообразные

Проведем простой опыт: возьмем любой журнал и начнем его сгибать в складку. Мы увидим, что страницы скользят и смещаются друг относи­тельно друга и без такого скольжения изгиб журнала вообще невозможен. Точно так же ведут себя и слои горных пород, сминаемые в складку. Они скользят друг по другу, и при этом в своде складки мощность слоев увели­чивается, т. к. материал слоев, раздавливаясь на крыльях, нагнетается и перемещается в своды складок. Такие складки называются подобными, по­тому что углы наклона всех слоев в крыле складки одинаковы и не меня­ются с глубиной. Но есть другой тип изгиба, когда, наоборот, мощность слоев остается везде неизменной, но при этом форма свода складки должна изменяться (рис. 17.14). Такие складки называются концентрическими.


Рис. 17.14. Складки: 1 — концентрические, 2 — подобные
1 2

 

 


Существует еще один очень интересный тип складок — диапировый. Образуется он в том случае, когда в толщах горных пород присутству­ют пластичные и относительно легкие породы, например, такие как соль, гипс, ангидрит, реже глины. Плотность соли (2,2 г/см3) меньше, чем плотность осадочных пород (в среднем 2,5-2,6 г/см3). В далекие времена ранней перми на месте Прикаспийской впадины существовала морская лагуна, залив. Климат был сухой, жаркий, и мор­ская вода, попав в залив, периодически испарялась, а на дне отклады­вался тонкий слой соли. Так продолжалось сотни тысяч лет, и посте­пенно накапливавшаяся соль образовала пласт мощностью в десятки и сотни метров. Это очень большая мощность, и чтобы ее наглядно пред­ставить, посмотрите на главное здание Московского государственного университета им. М. В. Ломоносова. От асфальта до 24-го этажа будет ровно 125 м.


Со временем климат и условия изменились и пласт соли, медленно погружаясь, был перекрыт уже другими осадочными породами — пес­ками, глинами, известняками. Но соль легче перекрывающих ее по­род, она менее плотная. Возникла инверсия плотности, т. е. легкая масса внизу, а более тяжелая — наверху. Это состояние неустойчиво, и достаточно небольших движений, например поднятия какого-то блока
земной коры под соленосным пластом, как соль начинает перетекать, двигаться и при этом вести себя как очень вязкая жидкость. Как толь­ко на пласте соли образуются вздутия, сразу же начинает действовать Архимедова сила и соль благодаря своей относительной легкости дви­жется вверх и всплывает в виде гигантской капли или гриба.

Рис. 17.15. Строение соляного купола, ядро которого очень сильно дислоцировано, а по краям — оторочка гипса (вертикальная штриховка)
2 КМ
Геологами хорошо изучена форма соляных куполов во многих рай­онах Белоруссии в Припятском прогибе, в Северной Германии,

Всплывая, соль приподнимает слои, залегающие выше, дефор­мирует их и прорывает, появляясь иногда на поверхности в виде соляного купола (рис. 17.15). Такие диапировые складки и купола широко распространены в Прикаспийской впадине, в которой име­ются соляные толщи кунгурского яруса перми, образовавшиеся примерно 265-260 млн лет тому назад. За это время выше слоя соли накопилась толща осадочных пород мощностью в несколько километров. Соль, приведенная в неустойчивое состояние тектони­ческими движениями, постепенно всплывала, образуя соляные ку­пола и диапировые складки. Поскольку соль в ядре складки обла­дает куполовидной формой, то на поверхности мы наблюдаем структуру, напоминающую разбитую тарелку, т. к. в стороны от купола отходят радиальные разломы, а между ними наблюдаются концентрические трещины. Соляные купола растут очень медлен­но, примерно на 1-3 см в год. Но за многие миллионы лет они «проходят» путь в несколько километров.

в Мексиканском заливе и других местах. Часто купола похожи на пере­вернутые капли, причем нередко они оторваны от основного слоя соли и уже «всплывают» сами по себе. Иногда верхняя часть такой гигантс­кой капли расплывается в стороны, и тогда соляной купол приобретает форму гриба на тонкой ножке.

Образование диапировых складок и соляных куполов хорошо под­дается моделированию в лабораторных условиях, в котором роль соли и осадочных пород играют специально подобранные жидкости с различной плотностью, при этом размер и время формирования моде­ли соляных куполов сокращаются в тысячи раз, но благодаря пропор­циональному уменьшению вязкости эквивалентного материала сохра­няются условия подобия реальным структурам.

Изучение районов с соляными пластами и куполами важно потому, что соль является хорошим экраном или покрышкой для нефти и газа, не пропуская их вверх. Поэтому под солью могут находиться нефтега­зовые месторождения.

Уже говорилось о том, что явления диапиризма связаны с присутстви­ем в геологическом разрезе пластичных толщ — соли, гипса, мергелей и глин. В последнем случае развивается глиняный диапиризм, хорошо изве­стный в неогеновых отложениях Керченского и Таманского полуостровов, Средне-Куринской впадины, на Юго-Восточном Кавказе. В тесной связи с глиняным диапиризмом находятся явления грязевого вулканизма, для про­явления которого, помимо пластичных глинистых толщ, необходимы плас­ты, насыщенные водой и газом. В толще таких пластов, на глубине, возни­кает аномально высокое пластовое давление, превышающее гидростатическое. Если такой участок будет нарушен разрывом, то в него устремится смесь воды, глины и газа и произойдет извержение грязевого вулкана, высота которого может достигать десятков и даже сотен метров, как, например, в Кобыстане, недалеко от Баку.

Чаще всего мы видим смятые в складки слои горных пород в поперечном разрезе, в котором они выглядят наиболее эффектно (рис. 17.16-17.18). Но если разрезать складку в горизонтальной плоскости, то мы получим форму складки в плане. И можно убедиться, что склад­ки в этом сечении также разнообразны: они могут быть вытянутыми, очень длинными, но узкими — линейными или, наоборот, овальными, почти круглыми — брахискладкамщ иногда они приобретают квадрат­ную форму (в разрезе — корыта или сундуки, о которых говорилось выше). Замыкание антиклинальной складки в плане называется перик- линалъю, а синклинальной — центриклиналью (рис. 17.20). Разнообра­зие формы складок зависит от свойств горных пород и от направления действия силы, приложенной к пластам.

Рис. 17.16. Закрытая складка. Карбонатный флиш. Таласский хребет, Северный Тянь-Шань (фото Н. С. Фроловой)

 

 

Рис. 17.17 Сильно сжатые, почти изоклинальные складки во флишевых отложениях Таласского хребта, Северный Тянь-Шань (фото Н. С. Фроловой)


Рис. 17.18. Складки в тонкослоистой карбонатно-глинистой толще в Таласском хребте, Средняя Азия, Тянь-Шань (фото Н. С. Фроловой)

 

 


 

Рис, 17.19. Одиночная складка в горизонтально залегающих меловых отложениях в низовьях р. Лены, Восточная Сибирь

Рис. 17.20. Складки в плане. 1 — линейная антиклинальная складка, 2 — брахи- складка синклинальная. А — периклиналь — замыкание антиклинальной складки. Б — центриклиналь — замыкание синклинальной складки

Как правило, в горных областях наблюдается сложное сочетание складок в большом объеме пород, т. е. все пространство занято склад­ками, переходящими друг в друга. Обычно такое сочетание складок называют полной складчатостью в противоположность прерывистой складчатости, характеризующейся тем, что отдельные складки разде­лены обширным пространством с горизонтальным залеганием пород, как, например, на Русской плите, где мы наблюдаем пологие отдельные складки, иногда называемые валами (рис. 17.19). Сочетание складок в областях с полной складчатостью приводит к образованию антиклино- риев (с преобладанием антиклинальных складок) и синклинориев (с преобладанием синклинальных) (рис. 17.21).

Рис. 17.21. Антиклинорий (1) и синклинорий (2)

 

Каким же образом возникают различные типы складок? Какие силы и сколько времени должны действовать на пласты горных пород, чтобы их перекрутить, как веревку? Был ли этот процесс относительно быст­рым или растягивался на десятки миллионов лет? Были ли силы, при­ложенные к пластам горных пород, исключительно большими или, на­оборот, очень слабыми, но действовали длительное время? Всеми этими вопросами занимается та ветвь геологической науки, которая называ­ется тектоникой. Именно тектоника рассматривает различные виды структур и условия их образования. Механизмы формирования прак­
тически всех известных типов складок можно свести к трем главным типам.

Первый тип — это складки поперечного изгиба. Они образуются в том случае, когда сила, сминающая горизонтально залегающий пласт, направлена перпендикулярно к нему (рис. 17.22Б).

А

 

 

Б

 

 

Рис. 17.22. Складчатость: А — продольного изгиба; Б — поперечного изгиба; В — нагнетания. Стрелками показано направление движения масс В

 

Второй тип складок — это складки продольного изгиба. В данном случае силы направлены вдоль пластов по горизонтали (рис. 17.22А). Такой тип складок можно получить, сжимая на столе толстую пачку листов бумаги. При этом отчетливо будет видно, как листы бумаги, сминаясь в складки, скользят друг по другу, иначе, как уже говорилось, смять их невозможно. Представим себе, что продольное сжатие испы­тывают слои разной вязкости: твердые песчаники и мягкие глины. При общем смятии более податливые глины будут сильнее раздавливаться и выжиматься с крыльев складок в их своды, которые будут увеличи­ваться в объеме. В них как бы накачивается, нагнетается пластичная глина.

Третий тип складок — это складки течения, или нагнетания (рис. 17.22В). Они свойственны таким пластичным породам, как глины, гипс, камен­ная соль, ангидрит, каменный уголь. Складки из таких пород отлича­ются очень прихотливой формой. Надо отметить, что при высоких тем­пературах, которые существуют на глубине несколько километров, пла­стичными становятся даже такие прочные породы, как кварциты, мраморы, известняки и песчаники.

Таким образом, формирование складок — это сложный и, самое главное, очень длительный процесс. Стоит обратить внимание на вре­мя, которое в геологии играет важную роль. Не следует думать, что складка может образоваться в течение нескольких лет. Этот процесс занимает миллионы, реже сотни тысяч лет. Тогда и силы, приложен­ные к пластам горных пород, могут быть не столь значительны, но зато устойчиво действовать длительное время, а горные породы ведут себя при этом как очень вязкая жидкость. Вместе с тем эти же породы обла­дают твердостью и хрупкостью. Если к ним быстро приложить какую- нибудь силу, например резко ударить молотком, они расколются, но при медленном сдавливании «потекут» и начнут деформироваться.

Где мы наблюдаем наиболее сложно построенные складчатые пояса, в которых нагромождение складок занимает огромные пространства? Это прежде всего участки столкновения — коллизии — крупных конти­нентальных литосферных плит, например Евро-Азиатской и Африкан­ской, между Азиатской и Индостанской, где возник грандиозный склад­чатый пояс Гималаев. Или это участки земной коры, в которых океанская плита погружается — субдуцирует в силу своей большей плотности — под континентальную (северо-восточная окраина Азии, Южно-Амери­канские Кордильеры и др.). Именно в этих зонах, хотя и медленно, в течение сотен миллионов лет со скоростью 2-8 см в год, происходит сближение и взаимодействие колоссальных масс земной коры, которые и вызывают смятие, коробление и перемещение осадочных и вулкано­генных пород.

– Конец работы –

Эта тема принадлежит разделу:

ОБЩАЯ ГЕОЛОГИЯ

О... Московский государственный университет им М В Ломоносова Геологический...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: СКЛАДЧАТЫЕ НАРУШЕНИЯ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Солнечная радиация
Длина волн     > 24 микрона 7% 0,17 - 0,35 мк 46% 0,35 * 0,75мк 47% 0,76 + 4,0 мк

ХИМИЧЕСКИЙ И МИНЕРАЛЬНЫЙ СОСТАВ НЕДР ЗЕМЛИ
Определение химического и минерального состава геосфер Земли представляет собой очень сложную задачу, которая во многом может быть решена лишь весьма приблизительно, основываясь на косвенных данных

ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ
Законы падения тел на Земле изучал Галилео Галилей (1564-1642). Он первый определил величину ускорения свободного падения (силы тяжести): g = 9,8 м/с2. Им была установлена незав

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
Более 400 лет назад У. Гильберт высказал предположение, что Зем­ля сама является магнитом, но механизм возникновения ее намагни­ченности до сих пор не вышел за рамки гипотезы.

Минералы
Все вещество земной коры и мантии Земли состоит из минералов, которые разнообразны по форме, строению, составу, распространенно­сти и свойствам. Все горные породы состоят из минералов или продук­то

Горные породы
Горные породы представляют собой естественные минеральные аг­регаты, формирующиеся в литосфере или на поверхности Земли в ходе различных геологических процессов. Основную массу горных пород слагают

СТРОЕНИЕ ЗЕМНОЙ КОРЫ
зерен, как правило, увеличиваются по мере роста температур метамор­физма (рис. 2.26). В предыдущем разделе было установлено общее внутреннее строение земног

ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ
Одной из главных задач геологии является воссоздание истории развития Земли и ее отдельных регионов. Сделать это возможно, толь­ко если известна последовательность геологических событий, если мы зн

Lt; • • »J
    / Л f L

ИЗОТОПНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ВОЗРАСТА МИНЕРАЛОВ И ГОРНЫХ ПОРОД
Многочисленные попытки найти в макромире природные часы, ко­торые бы позволяли надежно устанавливать возраст горных пород и руд, время проявления и длительность геологических процессов, не увенча­л

П ( 1ЧЧн J
235JJ     207pb 207рЬ

ТЕКТОНИКА ЛИТОСФЕРНЫХ ПЛИТ - СОВРЕМЕННАЯ ГЕОЛОГИЧЕСКАЯ ТЕОРИЯ
В 50-е гг. XX в. геологические и геофизические исследования Зем­ли проводились исключительно интенсивно. Особенно это касалось оке­анов, о строении дна которых и тем более о структуре земной коры в

ВЫВЕТРИВАНИЕ
Большинство геологических процессов на поверхности Земли обус­ловлены действием солнечной энергии и силы тяжести. Такие процес­сы называются экзогенными. Все горные породы под воздействием це­лого

ПРОЦЕССЫ ГИПЕРГЕНЕВА И КОРЫ ВЫВЕТРИВАНИЯ
Под зоной гипергенеза понимается поверхностная часть земной коры, непрерывно подвергаемая воздействию различных экзогенных факторов и в которой горные породы стремятся войти в равновесие с непрерыв

ОБРАЗОВАНИЕ ПОЧВ И ИХ СВОЙСТВА
Практически вся поверхность суши покрыта тонким слоем почвы, энергетически и геохимически весьма активным, в котором проявляет­ся взаимодействие между живыми организмами, атмосферой, гидро­сферой и

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ПОВЕРХНОСТНЫХ ТЕКУЧИХ ВОД
Водные потоки производят огромную геологическую работу на по­верхности суши. Реки, ручьи, ручейки переносят основную массу про­дуктов выветривания в озера, моря и океаны. Ежегодный твердый сток (вы

ВРЕМЕННЫЕ ВОДНЫЕ ПОТОКИ
Временные водные потоки возникают при выпадении атмосфер­ных осадков или таянии снегов. В остальное время сток в равнин­ных условиях приводит к формированию оврагов, т. к. отдельные безрусловые пот

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ РЕК
Реки, протекающие на всех континентах, кроме Антарктиды, произ­водят большую эрозионную и аккумулятивную работу. Полноводность и режим рек зависят от способа их питания и от климатических уело-

УСТЬЕВЫЕ ЧАСТИ РЕК, ДЕЛЬТЫ И ЗСТУАРИИ
Крупные реки впадают в моря и океаны, более мелкие — в озера и крупные реки. В том месте, где русло нижнего течения реки — устье — выходит к морю, образуется самостоятельный в ландшафтном и геоло­г

РАЗВИТИЕ РЕЧНЫХ ДОЛИН И ФОРМИРОВАНИЕ РЕЧНЫХ ТЕРРАС
В своем развитии любая река проходит ряд стадий: от молодости до зрелости.

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ПОДЗЕМНЫХ ВОД
Все воды, находящиеся в порах и трещинах горных пород ниже поверх­ности Земли, относятся к подземным водам. Часть этих вод свободно пере­мещается в верхней части земной коры под действием гравитаци

ВИДЫ ВОДЫ В ГОРНЫХ ПОРОДАХ
Вода в горных породах бывает нескольких видов. 1. Кристаллизационная вода находится в составе кристаллической решетки некоторых минералов, например в гипсе — CaS04 • 2Н2

ДВИЖЕНИЕ И РЕЖИМ ГРУНТОВЫХ ВОД
Зеркало грунтовых вод ведет себя в зависимости от рельефа, по­вышаясь на водоразделах и понижаясь к рекам, оврагам и другим местам дренирования. Естественно, вода в водоносном слое под дей­ствием с

ПОДЗЕМНЫЕ ВОДЫ И ОКРУЖАЮЩАЯ СРЕДА
Гидрогеологические процессы, происходящие в верхней части зем­ной коры, тесно связаны с хозяйственной деятельностью человека — водоснабжением, эксплуатацией городских агломераций, обоснованием стро

КАРСТОВЫЕ ПРОЦЕССЫ
Карстовые процессы развиваются в растворимых природными по­верхностными и подземными водами горных породах: известняках, доломитах, гипсах, ангидритах, каменной и калийной солях. Основой являются п

КАРСТОВЫЕ ФОРМЫ РЕЛЬЕФА
На поверхности карстовые формы представлены каррами, желоба­ми и рвами, понорами, воронками разных типов, западинами, котлови­нами, слепыми долинами (рис. 8.1). Карры — это р

ГРАВИТАЦИОННЫЕ ПРОЦЕССЫ
Если горные породы приобретают неустойчивое состояние, то в один прекрасный момент под действием силы тяжести может произойти обвал или оползень. Причин создания неустойчивости может быть много. Эт

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОЗЕР
Озеро — это углубление на поверхности суши — котловина, частично заполненная водой. Озера не обладают непосредственной связью с океа­нами или морями и наиболее широко развиты в областях гумидного к

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ БОЛОТ
Болото представляет собой аккумулятивное образование, характе­ризующееся временным или постоянным избыточным увлажнением, наличием влаголюбивой растительности и присутствием торфяных за­лежей. Влаж

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ВЕТРА
Ветер является одним из важных геологических агентов, изменяю­щих лик Земли. Он производит геологическую работу повсеместно, но весьма неравномерно. Работа ветра будет намного интенсивней там, где

ДЕФЛЯЦИЯ И КОРРАЗИЯ
Под дефляцией понимается выдувание рыхлых, дезинтегрирован­ных горных пород с поверхности Земли, а корразией называется обта­чивание выступов горных пород твердыми частицами, переносимыми потоками

АККУМУЛЯЦИЯ ЭОЛОВОГО МАТЕРИАЛА
Переносимые ветром частицы пыли, «перетекающие» пески, под­брошенные ураганом обломки и гальки где-то должны накапливаться, формируя толщи эоловых отложений. Пыль, вулканический пепел и мельчайший

ТИПЫ ПУСТЫНЬ
Пустыни объединяются в типы на основании того, преобладает ли в них дефляция или разные способы аккумуляции рыхлого материала. Каменистые (скальные) пустыни, или гаммады, представляют со­б

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ СНЕГА, ЛЬДА И ЛЕДНИКОВ
В современную эпоху 11 % суши, или 17 млн км2, занято ледниками и ледниковыми покровами, объемом около 30 млн км3. Из них 98 % приходится на материковые покровы, 2 % — на шель

РАЗРУШИТЕЛЬНАЯ (ЭКЗАРАЦИОННАЯ) ДЕЯТЕЛЬНОСТЬ ЛЕДНИКОВ
Термин экзарация используется для обозначения эродирующей деятельности ледника, которая появляется благодаря огромному давлению, движению льда, а также воздействию на ложе ледника включенных в

ТРАНСПОРТНАЯ И АККУМУЛЯТИВНАЯ ДЕЯТЕЛЬНОСТЬ ЛЕДНИКОВ
При своем движении ледник захватывает и переносит различный материал, начиная от тонкого песка и кончая крупными глыбами весом в десятки тонн. Попадают они в тело ледника различными способами.

ВОДНО-ЛЕДНИКОВЫЕ ОТЛОЖЕНИЯ
Крупные материковые покровы льда при своем таянии поставляют огромную массу воды. Целые реки текут по поверхности краевой части ледника, внутри него и подо льдом, вырабатывая в нем туннели. Ст

Ш1щщшщшщ
Рис. 13.7. Схема миграции воды и сортировки обломочного материала в рыхлой породе (по А. К. Орвину, 1942). а — начало промерзания и миграция воды; б — выталкивание обломков к краям, т. к. в центре

РАЗРЫВНЫЕ НАРУШЕНИЯ
До сих пор речь шла о таких деформациях пластов горных пород, которые не нарушали сплошности пласта, хотя пласт при этом мог сильно изгибаться. Иными словами, даже в самых сложных складках можно пр

МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ЗЕМЛЕТРЯСЕНИЯ И ЕГО ПАРАМЕТРЫ
Землетрясение тектонического типа, т. е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескива­ния, идущий с некоторой конечной скоростью, а не мгновенно. Он пред

РАСПРОСТРАНЕНИЕ ЗЕМЛЕТРЯСЕНИЙ И ИХ ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ
Распространение на земном шаре землетрясений носит крайне не­равномерный характер (рис. 18.7). Одни места характеризуются высо­кой сейсмичностью, а другие — практически асейсмичны. Зоны кон­центрац

ПРОГНОЗ ЗЕМЛЕТРЯСЕНИЙ
Несмотря на все усилия различных исследователей, предсказать десятилетие, год, месяц, день, час и место, где произойдет землетрясе­ние, пока невозможно. Сейсмический удар происходит внезапно и за­с

СЕЙСМОСТОЙКОЕ СТРОИТЕЛЬСТВО И ПОВЕДЕНИЕ ГРУНТОВ ПРИ ЗЕМЛЕТРЯСЕНИЯХ
Все строительство в сейсмооиасных районах осуществляется по спе­циальным требованиям, направленным на повышение прочности зда­ний. Это и специальные фундаменты; и способы крепления стен зда­ний; и

ГЛАВНЫЕ СТРУКТУРЫ ЛИТОСФЕРЫ
Континенты и океаны обладают различным строением и возрас­том земной коры. Континентальная кора имеет мощность до 75 км, в среднем 40 км, и, как уже говорилось, состоит из трех слоев (сверху вниз):

ЧЕЛОВЕК И ГЕОЛОГИЧЕСКАЯ СРЕДА
Прошедший век ознаменовался небывалым наступлением человека на природную, в том числе геологическую, среду, под которой понима­ется самая поверхностная часть земной коры, подверженная техноген­ному

ДОСТИЖЕНИЯ В ИЗУЧЕНИИ ЗЕМЛИ
Вторая половина XX в. ознаменовалась бесспорными достижения­ми в изучении не только Земли, но и всех планет Солнечной системы. Решающими факторами были успехи в технике и технологиях. Челове­чество

КОНЦЕПЦИЯ НЕЛИНЕЙНОСТИ В ГЕОЛОГИИ
Изложенное в предыдущих разделах показывает многообразие за­дач геологии как науки. Они, однако, сводятся в конечном счете к одной главной задаче — к прогнозированию глубинных и приповерхно­стных з

ТЕПЛОВОЕ ПОЛЕ ЗЕМЛИ
Температура поверхностной части земной коры почти полностью зависит от солнечного излучения, но суточные и сезонные колебания температуры не проникают глубже нескольких десятков — сотен мет­ров. Вс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги