рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ

ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ - раздел Геология, ОБЩАЯ ГЕОЛОГИЯ Законы Падения Тел На Земле Изучал Галилео Галилей (1564-1642). Он Первый Опр...

Законы падения тел на Земле изучал Галилео Галилей (1564-1642). Он первый определил величину ускорения свободного падения (силы тяжести): g = 9,8 м/с2.

Им была установлена независимость величины ускорения свобод­ного падения от массы падающего тела. Без сопротивления воздуха (в вакууме) легкое перышко и тяжелый булыжник движутся одинаково, одновременно достигая поверхности Земли. По этому же принципу падения тел созданы современные абсолютные гравиметры, в которых в вакууме взлетают и падают уголковые отражатели, пересекая лазер­ный луч, что дает возможность точно определять время и положение. Точность определения современного абсолютного гравиметра 10"6 см/с2. В честь Галилея была названа единица измерения ускорения свободного падения — 1 Гал = 1 см/с2. Производные единицы — миллиГал = 10"3 см/с2 и микроГал = 10"6 см/с2. 980 см/с2= 980 Гал.

Второй способ измерения ускорения силы тяжести, ииспользован- ный Г. Галилеем, заключается в измерении периода колебаний маятни­ка. Период колебаний Т равен: Т = 2nVL/g, где L — длина маятника, g — ускорение свободного падения.

Маятниковые приборы и сейчас применяются для абсолютных из­мерений. Относительную величину ускорения свободного падения (силы тяжести) измеряют с помощью точных пружинных весов.

Изучение законов движения планет Солнечной системы Т. Браге, И. Кеплера и закона падения тел на Земле Г. Галилея привело И. Нью­тона к открытию закона всемирного тяготения.

Закон всемирного тяготения. Закон всемирного тяготения И. Нью­тона (1666 г.) гласит: две точечные массы ггц и ш2, находящиеся на расстоянии г, притягиваются друг к другу с силой F, прямо пропорци­ональной произведению масс и обратно пропорциональной квадрату расстояния между ними:

F = G • ш, • ш.,/г2,

где G — гравитационная постоянная, экспериментально измеренная впервые Г. Кавэндишем (1791 г.), равная 6,673 • 10"11 м3/кг/с2 в системе единиц СИ. Точечными считаются массы тел, линейные размеры кото­рых много меньше расстояния между ними: 1«г.

Согласно этому закону планеты движутся вокруг Солнца, Луна об­ращается вокруг Земли, движутся спутники вокруг других планет, вер­тятся вокруг друг друга двойные звезды, взаимодействуют между со­бой множества звезд в галактиках и галактики друг с другом, а на Земле — падают яблоки и другие предметы, текут реки, выпадают осад­ки, движутся ледники, оползни и снежные лавины.

Благодаря силе тяготения формируются все космические тела — звезды, планеты, галактики, скопления галактик.

Сила тяготения собрала межзвездное вещество и сжала его в нашу планету. Сжатие разогрело первичное вещество Земли, и оно превра­тилось в оболочки Земли — ядро и мантию, образовались минералы. Запас гравитационной энергии, перешедшей в тепло, до сих пор явля­ется источником активности Земли, генерируя ее магнитное поле, осу­ществляя гравитационную дифференциацию вещества и, стало быть, тектоническую активность.

Гравитационное воздействие Луны и Солнца приводит к возникно­вению приливов как в жидкой (океаны), так и в твердой оболочках Земли. Сила гравитационного притяжения удерживает атмосферу на Земле, не давая ей разлететься в космос. Величина силы тяжести на Земле определяет максимальную высоту гор и размеры животных.

Масса Земли. Г. Кавендиш был первым, кто оценил массу сфери­ческой Земли. Известно, что ускорение силы тяжести g на Земле равно примерно 9,8 м/сек2. Это ускорение создается силой притяжения лю­бого тела Землей (R — радиус Земли, М — масса Земли, т* — масса любого тела):

т* • g = G ■ т* ■ M/R2,

откуда

g = G • M/R2.

Для Земли (шара) сила тяготения на ее поверхности равна силе, созда­ваемой точечной массой, равной ее массе и расположенной в ее центре.

Масса Земли равна:

М = g • R2/G.

Радиус Земли R равен 6378 км, получаем массу Земли: 5.97 • Ю~ кг.

Зная массу Земли, нетрудно рассчитать среднюю плотность, разделив массу М на ее объем V = 4/3nR3. Средняя плотность равна 5520 кг/м3.

Плотность поверхностных пород можно измерить непосредственно, она равна примерно 2650 кг/м3. Это означает, что плотность вещества Зем­ли увеличивается с глубиной.

Сила тяжести и вращение Земли. Сила тяжести в любой точке на поверхности Земли является результирующей двух сил — собственно ньютоновского тяготения и центробежной силы, возникающей при вра­щении Земли вокруг своей оси. Величина центробежного ускорения зависит от широты ф, поэтому ускорение силы тяжести на поверхности Земли так же зависит от широты:

В(ф) = (1 + а sin2cp + р sin22(p),

где ge = 9.780318 м/с — ускорение силы тяжести на экваторе, коэффи­циенты а = 5,278 • 10"3, Р = 2,3462 • 10"5. Эта формула носит название формулы нормальной силы тяжести (принята МАГ в 1967 г.). Вычитая из измеренного в какой-либо точке Земли значения ускорения силы тяжести, рассчитанного для широты этой точки нормального значения силы тяжести, получают величину аномального гравитационного поля. Аномальное гравитационное поле обусловлено неоднородностью рас­пределения масс в Земле.

Зависимость силы тяжести от широты экспериментально подтвер­ждена в первой половине XVIII в. исследованиями П. Буге в Гренлан­дии, Южной Америке и Париже, а также Дж. Эвереста в Гималаях век спустя.

При точных измерениях вблизи высочайших гор на Земле (Анды в Южной Америке и Гималаи в Азии) было установлено, что их гравитационное притяжение (уклонение отвеса) меньше, чем ожи­далось исходя из их формы. Объяснение этого открытия привело к идее компенсации веса гор наличием корней. Это явление носит название изостазии.

Искусственные спутники и сила тяжести. Современные исследова­ния Земли невозможно представить без наблюдений из космоса. Дис­танционные методы изучения формы Земли, ее поверхностной топо­графии, силы тяжести, магнитного поля, поверхностной температуры, растительности производятся с помощью искусственных спутников Земли.

Измерения точных координат методом GPS, или, говоря другими словами, современные навигационные системы, основаны на одновре­менных вычислениях орбит многих одновременно летящих искусст­венных спутников (24 или 36), так чтобы в поле зрения было по край­ней мере сразу три из них.

Уравнение движения спутника можно записать, зная закон всемирного тяготения и принимая, что траектория его движения — окружность:

Мш2г = GmM/H,

где m — масса спутника, со — угловая скорость движения спутника, г — радиус его орбиты. Или, поскольку линейная v и угловая w скорости дви­жения связаны соотношением v = юг ,

mv2/r = GmM/r2.

Отсюда

v = (GM/r)1''2,

где v — линейная скорость движения спутника, М — масса Земли, г — радиус орбиты спутника. Линейная скорость спутника на высоте при­мерно 100 км равна 7,9 км/с и не зависит от массы спутника. Эта ско­рость называется первой космической скоростью. С такой скоростью надо разогнать тело, чтобы оно стало искусственным спутником Земли. Энергия ракеты тратится на подъем спутника на высоту за пределы атмосферы и на разгон спутника до первой космической скорости. Да­лее ракета не нужна. При круговом движении спутника работа не совер­шается — сила тяготения перпендикулярна направлению смещения в любой точке орбиты.

Наблюдая за спутником оптическими или радиоастрономическими ме­тодами, удалось выявить малые отклонения траекторий спутников от кру­говых. Эти отклонения вызваны аномальным гравитационным полем Зем­ли. Обрабатывая данные по измерениям множества траекторий спутников, можно построить карты аномального гравитационного поля Земли.

Интерпретация аномального гравитационного поля представляет собой классическую обратную задачу, не имеющую единственного ре­шения.

Для определения локальных гравитационных аномалий проводится съемка по профилям или по площадям с равномерным шагом. На море съемки ведутся гравиметрами на судах. Измерения проводятся относи­тельными гравиметрами, поскольку важны только относительные раз­ности ускорения силы тяжести в различных точках съемки. Гравитаци­онные аномалии обусловлены неоднородностями плотности горных пород и их геометрией (сферическая форма, горизонтальный, верти­кальный или наклонный пласты и т. д.). Например, тело сферической формы радиусом г с избыточной плотностью 5р, центр которого распо­ложен на глубине h (h < г), создает аномалию вертикальной составля­ющей ускорения силы тяжести (Ag), зависящую от расстояния х от проекции центра сферы на поверхность Земли:

_ 4nGp5r3 h ё" 3 "(x2 + h2)3/2 '

Из этого уравнения для формы кривой аномалии ясно видно, что одному и тому же значению аномалии может соответствовать беско­нечное количество значений 8р, г, h. Выбор одного из бесконечного множества решений требует дополнительных топографических, геоло­гических, сейсмических, геомагнитных сведений.

Форма Земли. Еще два века назад при точных геодезических изме­рениях на Земле было установлено, что форма Земли не сфера, а эл­липсоид вращения. Такую форму принимает вращающаяся жидкая сфера. Земля сплющена у полюсов и растянута у экватора. Полярный радиус короче экваториального радиуса на 21 км. Сплюснутость Земли равна 21/6381 « 1/300. Поверхность покоящейся жидкости на Земле (или вообще в поле силы тяжести) является эквипотенциальной — по­верхностью, равной потенциальной энергии. Если в какой-либо точке это условие нарушено, жидкость начнет перетекать, восстанавливая эк­випотенциальную поверхность. Поэтому поверхность Мирового океана на Земле является эквипотенциальной поверхностью — поверхностью геоида. Поверхность геоида не совпадает с поверхностью эллипсоида. Отклонения называют высотами геоида.

С помощью спутников можно непосредственно измерять положе­ние поверхности геоида методом радарной альтиметрии — измеряя время пробега лазерного луча от спутника до поверхности океана и обратно. Точность измерения положения геоида на океанах составляет 10 см. Поверхность геоида на континентах можно представить как уровень океана в прорытых каналах. Непосредственно измерить ее положение невозможно, поэтому ее рассчитывают на основе измеренного поля силы тяжести. На рис. 5 на цветной вклейке показана карта высот геоида (данные 2000 г.). Минимальное значение высоты геоида (-113 м) отме­чается у юго-восточной оконечности Индии, максимальное (+57 м) — в районе Исландии. Поверхность (форма) геоида не есть истинная фор­ма Земли, а есть форма эквипотенциальной поверхности.

Измерения поля силы тяжести на Земле показали, что земная кора в целом изостатически уравновешена.

– Конец работы –

Эта тема принадлежит разделу:

ОБЩАЯ ГЕОЛОГИЯ

О... Московский государственный университет им М В Ломоносова Геологический...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГРАВИТАЦИОННОЕ ПОЛЕ ЗЕМЛИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Солнечная радиация
Длина волн     > 24 микрона 7% 0,17 - 0,35 мк 46% 0,35 * 0,75мк 47% 0,76 + 4,0 мк

ХИМИЧЕСКИЙ И МИНЕРАЛЬНЫЙ СОСТАВ НЕДР ЗЕМЛИ
Определение химического и минерального состава геосфер Земли представляет собой очень сложную задачу, которая во многом может быть решена лишь весьма приблизительно, основываясь на косвенных данных

МАГНИТНОЕ ПОЛЕ ЗЕМЛИ
Более 400 лет назад У. Гильберт высказал предположение, что Зем­ля сама является магнитом, но механизм возникновения ее намагни­ченности до сих пор не вышел за рамки гипотезы.

Минералы
Все вещество земной коры и мантии Земли состоит из минералов, которые разнообразны по форме, строению, составу, распространенно­сти и свойствам. Все горные породы состоят из минералов или продук­то

Горные породы
Горные породы представляют собой естественные минеральные аг­регаты, формирующиеся в литосфере или на поверхности Земли в ходе различных геологических процессов. Основную массу горных пород слагают

СТРОЕНИЕ ЗЕМНОЙ КОРЫ
зерен, как правило, увеличиваются по мере роста температур метамор­физма (рис. 2.26). В предыдущем разделе было установлено общее внутреннее строение земног

ОТНОСИТЕЛЬНАЯ ГЕОХРОНОЛОГИЯ
Одной из главных задач геологии является воссоздание истории развития Земли и ее отдельных регионов. Сделать это возможно, толь­ко если известна последовательность геологических событий, если мы зн

Lt; • • »J
    / Л f L

ИЗОТОПНЫЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ВОЗРАСТА МИНЕРАЛОВ И ГОРНЫХ ПОРОД
Многочисленные попытки найти в макромире природные часы, ко­торые бы позволяли надежно устанавливать возраст горных пород и руд, время проявления и длительность геологических процессов, не увенча­л

П ( 1ЧЧн J
235JJ     207pb 207рЬ

ТЕКТОНИКА ЛИТОСФЕРНЫХ ПЛИТ - СОВРЕМЕННАЯ ГЕОЛОГИЧЕСКАЯ ТЕОРИЯ
В 50-е гг. XX в. геологические и геофизические исследования Зем­ли проводились исключительно интенсивно. Особенно это касалось оке­анов, о строении дна которых и тем более о структуре земной коры в

ВЫВЕТРИВАНИЕ
Большинство геологических процессов на поверхности Земли обус­ловлены действием солнечной энергии и силы тяжести. Такие процес­сы называются экзогенными. Все горные породы под воздействием це­лого

ПРОЦЕССЫ ГИПЕРГЕНЕВА И КОРЫ ВЫВЕТРИВАНИЯ
Под зоной гипергенеза понимается поверхностная часть земной коры, непрерывно подвергаемая воздействию различных экзогенных факторов и в которой горные породы стремятся войти в равновесие с непрерыв

ОБРАЗОВАНИЕ ПОЧВ И ИХ СВОЙСТВА
Практически вся поверхность суши покрыта тонким слоем почвы, энергетически и геохимически весьма активным, в котором проявляет­ся взаимодействие между живыми организмами, атмосферой, гидро­сферой и

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ПОВЕРХНОСТНЫХ ТЕКУЧИХ ВОД
Водные потоки производят огромную геологическую работу на по­верхности суши. Реки, ручьи, ручейки переносят основную массу про­дуктов выветривания в озера, моря и океаны. Ежегодный твердый сток (вы

ВРЕМЕННЫЕ ВОДНЫЕ ПОТОКИ
Временные водные потоки возникают при выпадении атмосфер­ных осадков или таянии снегов. В остальное время сток в равнин­ных условиях приводит к формированию оврагов, т. к. отдельные безрусловые пот

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ РЕК
Реки, протекающие на всех континентах, кроме Антарктиды, произ­водят большую эрозионную и аккумулятивную работу. Полноводность и режим рек зависят от способа их питания и от климатических уело-

УСТЬЕВЫЕ ЧАСТИ РЕК, ДЕЛЬТЫ И ЗСТУАРИИ
Крупные реки впадают в моря и океаны, более мелкие — в озера и крупные реки. В том месте, где русло нижнего течения реки — устье — выходит к морю, образуется самостоятельный в ландшафтном и геоло­г

РАЗВИТИЕ РЕЧНЫХ ДОЛИН И ФОРМИРОВАНИЕ РЕЧНЫХ ТЕРРАС
В своем развитии любая река проходит ряд стадий: от молодости до зрелости.

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ПОДЗЕМНЫХ ВОД
Все воды, находящиеся в порах и трещинах горных пород ниже поверх­ности Земли, относятся к подземным водам. Часть этих вод свободно пере­мещается в верхней части земной коры под действием гравитаци

ВИДЫ ВОДЫ В ГОРНЫХ ПОРОДАХ
Вода в горных породах бывает нескольких видов. 1. Кристаллизационная вода находится в составе кристаллической решетки некоторых минералов, например в гипсе — CaS04 • 2Н2

ДВИЖЕНИЕ И РЕЖИМ ГРУНТОВЫХ ВОД
Зеркало грунтовых вод ведет себя в зависимости от рельефа, по­вышаясь на водоразделах и понижаясь к рекам, оврагам и другим местам дренирования. Естественно, вода в водоносном слое под дей­ствием с

ПОДЗЕМНЫЕ ВОДЫ И ОКРУЖАЮЩАЯ СРЕДА
Гидрогеологические процессы, происходящие в верхней части зем­ной коры, тесно связаны с хозяйственной деятельностью человека — водоснабжением, эксплуатацией городских агломераций, обоснованием стро

КАРСТОВЫЕ ПРОЦЕССЫ
Карстовые процессы развиваются в растворимых природными по­верхностными и подземными водами горных породах: известняках, доломитах, гипсах, ангидритах, каменной и калийной солях. Основой являются п

КАРСТОВЫЕ ФОРМЫ РЕЛЬЕФА
На поверхности карстовые формы представлены каррами, желоба­ми и рвами, понорами, воронками разных типов, западинами, котлови­нами, слепыми долинами (рис. 8.1). Карры — это р

ГРАВИТАЦИОННЫЕ ПРОЦЕССЫ
Если горные породы приобретают неустойчивое состояние, то в один прекрасный момент под действием силы тяжести может произойти обвал или оползень. Причин создания неустойчивости может быть много. Эт

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ОЗЕР
Озеро — это углубление на поверхности суши — котловина, частично заполненная водой. Озера не обладают непосредственной связью с океа­нами или морями и наиболее широко развиты в областях гумидного к

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ БОЛОТ
Болото представляет собой аккумулятивное образование, характе­ризующееся временным или постоянным избыточным увлажнением, наличием влаголюбивой растительности и присутствием торфяных за­лежей. Влаж

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ВЕТРА
Ветер является одним из важных геологических агентов, изменяю­щих лик Земли. Он производит геологическую работу повсеместно, но весьма неравномерно. Работа ветра будет намного интенсивней там, где

ДЕФЛЯЦИЯ И КОРРАЗИЯ
Под дефляцией понимается выдувание рыхлых, дезинтегрирован­ных горных пород с поверхности Земли, а корразией называется обта­чивание выступов горных пород твердыми частицами, переносимыми потоками

АККУМУЛЯЦИЯ ЭОЛОВОГО МАТЕРИАЛА
Переносимые ветром частицы пыли, «перетекающие» пески, под­брошенные ураганом обломки и гальки где-то должны накапливаться, формируя толщи эоловых отложений. Пыль, вулканический пепел и мельчайший

ТИПЫ ПУСТЫНЬ
Пустыни объединяются в типы на основании того, преобладает ли в них дефляция или разные способы аккумуляции рыхлого материала. Каменистые (скальные) пустыни, или гаммады, представляют со­б

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ СНЕГА, ЛЬДА И ЛЕДНИКОВ
В современную эпоху 11 % суши, или 17 млн км2, занято ледниками и ледниковыми покровами, объемом около 30 млн км3. Из них 98 % приходится на материковые покровы, 2 % — на шель

РАЗРУШИТЕЛЬНАЯ (ЭКЗАРАЦИОННАЯ) ДЕЯТЕЛЬНОСТЬ ЛЕДНИКОВ
Термин экзарация используется для обозначения эродирующей деятельности ледника, которая появляется благодаря огромному давлению, движению льда, а также воздействию на ложе ледника включенных в

ТРАНСПОРТНАЯ И АККУМУЛЯТИВНАЯ ДЕЯТЕЛЬНОСТЬ ЛЕДНИКОВ
При своем движении ледник захватывает и переносит различный материал, начиная от тонкого песка и кончая крупными глыбами весом в десятки тонн. Попадают они в тело ледника различными способами.

ВОДНО-ЛЕДНИКОВЫЕ ОТЛОЖЕНИЯ
Крупные материковые покровы льда при своем таянии поставляют огромную массу воды. Целые реки текут по поверхности краевой части ледника, внутри него и подо льдом, вырабатывая в нем туннели. Ст

Ш1щщшщшщ
Рис. 13.7. Схема миграции воды и сортировки обломочного материала в рыхлой породе (по А. К. Орвину, 1942). а — начало промерзания и миграция воды; б — выталкивание обломков к краям, т. к. в центре

СКЛАДЧАТЫЕ НАРУШЕНИЯ
Наблюдая толщи горных пород, смятые в складки, кажется, что формы складок бесконечно разнообразны. На самом деле их можно свести к нескольким основным типам и легко различать в кажущемся хаосе разл

РАЗРЫВНЫЕ НАРУШЕНИЯ
До сих пор речь шла о таких деформациях пластов горных пород, которые не нарушали сплошности пласта, хотя пласт при этом мог сильно изгибаться. Иными словами, даже в самых сложных складках можно пр

МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ЗЕМЛЕТРЯСЕНИЯ И ЕГО ПАРАМЕТРЫ
Землетрясение тектонического типа, т. е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескива­ния, идущий с некоторой конечной скоростью, а не мгновенно. Он пред

РАСПРОСТРАНЕНИЕ ЗЕМЛЕТРЯСЕНИЙ И ИХ ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ
Распространение на земном шаре землетрясений носит крайне не­равномерный характер (рис. 18.7). Одни места характеризуются высо­кой сейсмичностью, а другие — практически асейсмичны. Зоны кон­центрац

ПРОГНОЗ ЗЕМЛЕТРЯСЕНИЙ
Несмотря на все усилия различных исследователей, предсказать десятилетие, год, месяц, день, час и место, где произойдет землетрясе­ние, пока невозможно. Сейсмический удар происходит внезапно и за­с

СЕЙСМОСТОЙКОЕ СТРОИТЕЛЬСТВО И ПОВЕДЕНИЕ ГРУНТОВ ПРИ ЗЕМЛЕТРЯСЕНИЯХ
Все строительство в сейсмооиасных районах осуществляется по спе­циальным требованиям, направленным на повышение прочности зда­ний. Это и специальные фундаменты; и способы крепления стен зда­ний; и

ГЛАВНЫЕ СТРУКТУРЫ ЛИТОСФЕРЫ
Континенты и океаны обладают различным строением и возрас­том земной коры. Континентальная кора имеет мощность до 75 км, в среднем 40 км, и, как уже говорилось, состоит из трех слоев (сверху вниз):

ЧЕЛОВЕК И ГЕОЛОГИЧЕСКАЯ СРЕДА
Прошедший век ознаменовался небывалым наступлением человека на природную, в том числе геологическую, среду, под которой понима­ется самая поверхностная часть земной коры, подверженная техноген­ному

ДОСТИЖЕНИЯ В ИЗУЧЕНИИ ЗЕМЛИ
Вторая половина XX в. ознаменовалась бесспорными достижения­ми в изучении не только Земли, но и всех планет Солнечной системы. Решающими факторами были успехи в технике и технологиях. Челове­чество

КОНЦЕПЦИЯ НЕЛИНЕЙНОСТИ В ГЕОЛОГИИ
Изложенное в предыдущих разделах показывает многообразие за­дач геологии как науки. Они, однако, сводятся в конечном счете к одной главной задаче — к прогнозированию глубинных и приповерхно­стных з

ТЕПЛОВОЕ ПОЛЕ ЗЕМЛИ
Температура поверхностной части земной коры почти полностью зависит от солнечного излучения, но суточные и сезонные колебания температуры не проникают глубже нескольких десятков — сотен мет­ров. Вс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги