рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ.

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ. - раздел Геология, ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И В НЕДРАХ ЗЕМЛИ Земля Сложена Несколькими Оболочками – Внешними (Атмосфера, Гидросфера, Биосф...

Земля сложена несколькими оболочками – внешними (атмосфера, гидросфера, биосфера) и внутренними, которые называют геосферами (ядро, мантия, литосфера). Изучение внутреннего строения Земли производится различными методами. Геологические методы, основанные на изучении естествен­ных обнажений горных пород, разрезов шахт и рудников, кернов глубоких буровых скважин, дают возможность судить о строении приповерхностной части земной коры. Глубина известных пробуренных скважин достигает 7,5—9,5 км, и только одна в мире опытная скважина, заложенная на Кольском полуострове, уже достигла глубины более 12 км при проектной глубине до 15 км. В вулканических областях по продуктам извержения вулканов можно судить о составе вещества на глубинах 50—100 км. В целом же глубинное внутреннее строение Земли изучается главным образом геофизическими методами: сейсмическим, гравиметрическим, магнитометрическим и др. Одним из важнейших методов является сейсмический (греч. «сейсмос» — трясение) метод, основанный на изучении естественных землетрясений и «искусственных землетрясений», вызываемых взрывами или ударными вибрационными воздействиями на земную кору.

Очаги землетрясений располагаются на различных глубинах от приповерхностных (около 10 км) до самых глубоких (до 700 км), прослеженных в разломных зонах по окраинам Тихого океана. Возникающие в очаге сейсмические волны как бы просвечивают Землю и дают представление о той среде, через которую они проходят. В очаге (или фокусе) возникают два главных типа волн:

1) самые быстрые продольные Р-волны (т.е. первичные — primary);

2) более медленные поперечные S-волны (т.е. вторичные — secondary). При распространении Р-волн горные породы испытывают сжатие и растяжение (смещение частиц среды вдоль направления волны). Р—волны проходят в твердых и жидких телах земных недр. Поперечные S-волны распространяются только в твердых телах, и с их распространением связаны колебания горных пород под прямым углом к направлению распространения волны. При прохождении поперечных волн упругие породы подвергаются деформации сдвига и кручения. Кроме того, выделяются поверхностные L—волны (т.е. длинные — long), которые отличаются сложными синусоидальными колебаниями вдоль или около земной поверхности. Регистрация прихода сейсмических волн производится на специальных сейсмических станциях, оборудованных записывающими приборами — сейсмографами, расположенными на разных расстояниях от очага. Такое расположение сейсмостанций позволяет судить о скорости распространения колебаний на разных глубинах, поскольку к более отдаленным станциям приходят волны, прошедшие через более глубокие слои Земли. Запись сейсмографом прихода волн называется сейсмограммой.

Реальные скорости сейсмических волн зависят от упругих свойств и плотности горных пород, через которые они проходят. Изменения скорости сейсмических волн отчетливо показывают на неоднородность и расслоенностъ Земли. О различных слоях и состоянии веществ, их слагающих, указывают преломленные и отраженные волны от их граничных поверхностей. На основании скорости распространения сейсмических волн австралийский сейсмолог К. Буллен разделил Землю на ряд зон, дал им буквенные обозначения в определенных усредненных интервалах глубин, которые используются с некоторыми уточнениями до настоящего времени. Выделяют три главные области Земли:

1. Земная кора (слой А) - верхняя оболочка Земли, мощность которой изменяется от 6—7 км под глубокими частями океанов до 35—40 км под равнинными платформенными территориями континентов, до 50—70(75) км под горными сооружениями (наибольшие под Гималаями и Андами).

2. Мантия Земли, распространяющаяся до глубин 2900 км. В ее пределах по сейсмическим данным выделяются: верхняя мантия — слой В глубиной до 400 км и С — до 800—1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия — слой D до глубины 2700 с переходным слоем D — от 2700 до 2900 км.

3. Ядро Земли, подразделяемое: на внешнее ядро — слой Е в пределах глубин 2900—4980 км; переходную оболочку — слой F — от 4980 до 5120 км и внутреннее ядро — слой G до 6971 км.

По имеющимся данным выделены несколько разделов первого порядка, в которых скорость сейсмических волн резко изменяется.

Земная кора отделяется от слоя В верхней мантии достаточно резкой граничной скоростью. В 1909г. югославский сейсмолог А. Мохоровичич при изучении бал­канских землетрясений впервые установил наличие этого раздела, носящего теперь его имя и принятого за нижнюю границу земной коры. Часто эту границу сокращенно называют границей Мохо или М. Второй резкий раздел совпадает с переходом от нижней мантии к внешнему ядру, где наблюдается скачкообразное падение скорости продольных волн с 13,6 до 8,1 км/с, а поперечные волны гасятся. Внезапное резкое уменьшение скорости продольных волн и исчезно­вение поперечных волн во внешнем ядре свидетельствуют о необычайном состоянии вещества, отличающемся от твердой мантии.

Эта граница названа именем Б. Гутенберга. Третий раздел совпадает (основанием слоя F и внутренним ядром Земли (слой G).

Средняя плотность Земли составляет 5,52 г/см3. Горные породы, слагающие земную кору, отличаются малой плотностью. В осадочных породах плотность около 2,4—2,5 г/см3, в гранитах и большинстве метаморфических пород —2,7—2,8 г/см3, в основных магматических породах — 2,9—3,0 г/см3. Средняя плотность земной коры принимается около 2,8 г/см3. Сопоставление средней плотности земной коры с плотностью Земли указывает на то, что во внутренних оболочках — мантии и ядре плотность должна быть значительно выше. По имеющимся данным в кровле верхней мантии, ниже границы Мохо, плотность пород составляет 3,3—3,4 г/см3, у нижней границы нижней мантии (глубина 2900 км) — примерно 5,5—5,7 г/см3, ниже границы Гутенберга (верхняя граница внешнего ядра) — 9,7—10,0 г/см3, затем повышается до 11,0—11,5 г/см3, увеличиваясь во внутреннем ядре до 12,5—13,0 г/см3.

Давление. Расчеты давления на различных глубинах Земли в со­ответствии с указанными плотностями выражаются следующими зна­чениями

Глубина, км
Давление, мПа 1х103 3,1х103 14х103 35х103 137х103 312х103 361х103

Ускорение силы тяжести. В ряде пунктов поверхности Земли геофизическим гравиметрическим методом выполнены измерения абсолютной величины силы тяжести с помощью гравиметров. Эти исследования позволяют выявить гравиметрические аномалии — области значительного увеличения или уменьшения силы тяжести. Увеличение силы тяжести обычно связано с присутствием более плотного вещества, уменьшение указывает на меньшую плотность. Что касается ускорения силы тяжести, то его величина различна. На поверхности оно в среднем составляет 982 см/с2 (при 983 см/с2 — на полюсе и 978 см/с2 — на экваторе), с глубиной сначала увеличивается, затем быстро падает. По данным В. А. Магницкого, максимальное значение ускорения силы тяжести достигает в основании нижней мантии у границы с внешним ядром 1037 см/с2. В пределах ядра Земли ускорение силы тяжести начинает значительно уменьшаться, доходя до 452 см/с2 в промежуточном слое F, до 126 см/с2 на глубине 6000 км и в центре до 0.

Магнетизм. Земля действует как гигантский магнит с силовым полем вокруг. Сведения о распределении магнитного поля Земли на ее поверхности и околоземном пространстве дают наземные, морские и аэромагнитные съемки, а также измерения, производимые на низколетящих искусственных спутниках Земли. Геомагнитное поле дипольное, магнитные полюсы Земли не совпадают с географическими, т.е. истинными — северным и южным. Между магнитным и географическим полюсами образуется некоторый угол (около 11,5°), называемый магнитным склонением. Различают также магнитное наклонение, определяемое как угол между магнитными силовыми линиями и горизонтальной плоскостью. Происхождение постоянного магнитного поля Земли связывают с действием сложной системы электрических токов, возникающих при вращении Земли и сопровождающих турбулентную конвекцию (перемещение) в жидком внешнем ядре. Таким образом, Земля работает как динамомашина, в которой механическая энергия этой конвекционной системы генерирует электрические токи и связанный с ними магнетизм.

Магнитное поле Земли оказывает влияние и на ориентировку в горных породах ферромагнитных минералов, таких, как гематит, магнетит, титаномагнетит и др. Особенно это проявляется в магматических горных породах — базальтах, габбро, перидотитах и др. Ферромагнитные минералы в процессе застывания магмы принимают ориентировку существующего в это время направления магнитного поля. После того, когда горные породы полностью застывают, ориентировка ферромагнитных минералов сохраняется. Определенная ориентировка ферромагнитных минералов происходит и в осадочных породах во время осаждения железистых минеральных частиц. Намагниченность ориентированных образцов определяется как в лабораториях, так и в полевых условиях. В результате измерений устанавливается склонение и наклонение магнитного поля во время первоначального намагничивания минералов горных пород. Таким образом, и магматические, и осадочные горные породы нередко обладают стабильной намагниченностью, указывающей на направление магнитного поля в момент их формирования. В настоящее время при геологических исследованиях и поиске железорудных месторождений полезных ископаемых широко применяется магнитометрический метод.

Тепловой режим Земли определяется излучением Солнца и теплом, выделяемым внутриземными источниками. Самое большое количество энергии Земля получает от Солнца, но значительная часть отражается обратно в мировое пространство. Количество получаемого и отраженного Землей солнечного тепла неодинаково для различных широт. Среднегодовая температура отдельных пунктов в каждом полушарии уменьшается от экватора к полюсам. Ниже поверхности Земли влияние солнечного тепла резко снижается, в результате чего на небольшой глубине располагается пояс постоянной температуры, равной среднегодовой температуре данной местности. Глубина расположения пояса постоянных температур в различных районах колеблется от первых метров до 20—30 м.

Ниже пояса постоянных температур важное значение приобретает внутренняя тепловая энергия Земли. Давно установлено, что в шахтах, рудниках, буровых скважинах происходит постоянное увеличение температуры с глубиной, связанное с тепловым потоком из внутренних частей Земли. Тепловой поток измеряется в калориях на квадратный сантиметр за секунду — мккал/см х с. По многочисленным данным, средняя величина теплового потока принимается равной 1,4—1,5 мккал/см2 х сек. Однако исследования, проведенные как на континентах, так и в океанах, показали значительную изменчивость теплового .потока в различных структурных зонах.

По данным Е. А. Любимовой, наименьшие значения теплового потока отмечены в районе древних кристаллических щитов (Балтийском, Украинском, Канадском) и равны в среднем 0,85 мккал/см х с±10% (при колебаниях от 0,6 до 1,1). В равнинных платформенных областях тепловой поток находится в интервале 1,0—1,2 мккал/см х с и только местами на отдельных поднятиях увеличивается до 1,3—1,4 мккал/см х с. В палеозойских орогенических областях, таких, как Урал, Аппалачи, интенсивность потока поднимается до 1,5 мккал/см2 х с.

В молодых горных сооружениях, созданных в новейшее геологическое время (таких, как Альпы, Кавказ, Тянь-Шань, Кордильеры и др.), тепловые потоки отличаются большим разнообразием. Так, например, в Складчатых Карпатах и прилегающих частях внутренних прогибов тепловой поток в среднем составляет 1,95 мккал/см2 х с, а в Предкарпатском прогибе — 1,18 мккал/см2 х с. Аналогичные изменения отмечены на Кавказе, где в зонах поднятия тепловой поток увеличива­ется до 1,6—1,8 мккал/см2 х с, а в складчатом сооружении Большого Кавказа единичные определения дали наиболее высокие значения теплового потока — 3,0—4,0 мккал/см2 х с. Для юго-восточного погружения Кавказа отмечены значительные колебания тепловых потоков и установлена интересная деталь увеличения их значений вблизи грязевых вулканов до 1,9—2,33 мккал/см2 х с. Высокие тепловые потоки наблюдаются в областях современного вулканизма, составляя в сред­нем около 3,6 мккал/см -с. В рифтовой (англ, «рифт» — расселина, ущелье) системе оз. Байкал тепловой поток оценивается от 1,2 до 3,4 мккал/см2 -с. В пределах значительных пространств ложа Мирового океана величина теплового потока находится в пределах 1,1—1,2 мккал/см2 х с, что сопоставимо с данными по платформенным частям континентов. Высокие тепловые потоки связаны с рифтовыми долинами срединно-океанских хребтов. Средняя величина теплового потока 1,8—2 мккал/см2 х с, но в нескольких местах увеличивается до 6,7—8,0 мккал/см2 х с. Разнообразие приведенных величин теплового потока, по-видимому, связано с неоднородными тектономагматическими процессами в различных зонах Земли.

Каковы же источники тепла внутри Земли? Как известно, в соответствии с современными представлениями, Земля сформировалась в результате аккреции газово-пылевых частиц протопланетного облака в виде холодного тела. Следовательно, внутри Земли должны иметься источники тепла, создающие современный тепловой поток и высокую температуру в недрах Земли. Одним из источников внутренней тепловой энергии является радиогенное тепло, связанное с распадом долгоживущих радиоактивных элементов 238U, 23SU, 232Th, 40K, 87Rb. Периоды полураспада этих изотопов соизмеримы с возрастом Земли, поэтому до сих пор они остаются важным источником тепловой энергии. В начальные этапы развития Земли могли быть поставщиками тепла и короткоживущие радиоактивные изотопы, такие, как 26Al, 38CI и др. Вторым источником тепловой энергии предполагается гравитационная дифференциация вещества, зарождающаяся после некоторого разогрева на уровне ядра и, возможно, в слое В верхней мантии. Но значительная часть тепла, связанная с гравитационной дифференциацией, по-видимому, рассеивалась в пространстве, особенно в начале формирования планеты. Дополнительным источником внутреннего тепла может быть приливное трение, возникающее при замедлении вращения Земли из-за приливного взаимодействия с Луной, и в меньшей степени, с Солнцем.

Температура внутри Земли. Определение температуры в оболочках Земли основывается на различных, часто косвенных данных. Наиболее достоверные температурные данные относятся к самой верхней части земной коры, вскрываемой шахтами и буровыми скважинами до максимальных глубин — 12 км (Кольская скважина). Нарастание температуры в градусах Цельсия на единицу глубины называют геотермическим градиентом, а глубину в метрах, на протяжении которой температура увеличивается на 1 С,— геотермической ступенью. Геотермический градиент и соответственно геотермическая ступень изменяются от места к месту в зависимости от геологических условий, эндогенной активности в различных районах, а также неоднородной теплопроводности горных пород. При этом, по данным Б. Гутенберга, пределы колебаний отличаются более чем в 25 раз. Приме­ром тому являются два резко различных градиента: 1) 150° на 1 км r штате Орегон (США), 2) 6° на 1 км зарегистрирован в Южной Африке. Соответственно этим геотермическим градиентам изменяется и геотермическая ступень от 6,67 м в первом случае до 167 м — во втором. Наиболее часто встречаемые колебания градиента в пределах 20—50°, а геотермической ступени — 15—45 м. Средний гео­термический градиент издавна принимался в 30°С на 1 км.

По данным В. Н. Жаркова, геотермический градиент близ поверхности Земли оценивается в 20° С на 1 км. Если исходить из этих двух значений геотермического градиента и его неизменности вглубь Земли, то на глубине 100 км должна была бы быть температура 3000 или 2000°С. Однако это расходится с фактическими данными. Именно на этих глубинах периодически зарождаются магматические очаги, из которых изливается на поверхность лава, имеющая максимальную температуру 1200—1250°С. Учитывая этот своеобразный «термометр», ряд авторов (В. А. Любимов, В. А. Магницкий) считают, что на глубине 100 км температура не может превышать 1300—1500°С. При более высоких температурах породы мантии были бы полностью расплавлены, что противоречит свободному прохождению поперечных сейсмических волн. Таким образом, средний геотермический градиент прослеживается лишь до некоторой относительно небольшой глубины от поверхности (20—30 км), а дальше он должен уменьшаться. Но даже и в этом случае в одном и том же месте изменение температуры с глубиной неравномерно. Это можно видеть на примере изменения температуры с глубиной по Кольской скважине, расположенной в пределах устойчивого кристаллического щита платформы. При заложении этой скважины рассчитывали на геотермический градиент 100 на 1 км и, следовательно, на проектной глубине (15 км) ожидали температуру порядка 150°С. Однако такой градиент был только до глубины 3 км, а далее он стал увеличиваться в 1,5—2,0 раза. На глубине 7 км температура была 120°С, на 10 км—180, на 12 км — 220°С. Предполагается, что на проектной глубине температура будет близка к 280°С. Вторым примером являются данные по скважине, заложенной в Северном Прикаспии, в районе более активного эндогенного режима. В ней на глубине 500 м температура оказалась равной 42,2°С, на 1500 м — 69,9, на 2000 м — 80,4, на 3000 м - 108,3°С.

Какова же температура в более глубоких зонах мантии и ядра Земли? Более или менее достоверные данные получены о температуре основания слоя В верхней мантии. По данным В. Н. Жаркова, детальные исследования фазовой диаграммы Mg2SiO4 — Fe2SiO4, позволили определить реперную температуру на глубине, соответствующей первой зоне фазовых переходов (400 км), т.е. перехода оливина в шпинель. Температура здесь в результате указанных исследований около 1600±50° С.

Вопрос о распределении температур в мантии ниже слоя В и ядре Земли еще не решен, и поэтому высказываются различные представления. Можно только предположить, что температура с глубиной увеличивается при значительном уменьшении геотермического градиента и увеличении геотермической ступени. Предполагают, что температура в ядре Земли находится в пределах 4000—5000°С.

Средний химический состав Земли. Для суждения о химическом составе Земли привлекаются данные о метеоритах, представляющих собой наиболее вероятные образцы протопланетного материала, из которого сформировались планеты земной группы и астероиды. К настоящему времени хорошо изучено много выпавших на Землю в разные времена и в разных местах метеоритов. По составу выделяют три типа метеоритов: 1) железные, состоящие главным образом из никелистого железа (90—91% Fe), с небольшой примесью фосфора и кобальта; 2) железокаменные (сидеролиты), состоящие из железа и силикатных минералов; 3) каменные, или аэролиты, состоящие главным образом из железисто—магнезиальных силикатов и включений никелистого железа.

Наибольшее распространение имеют каменные метеориты — около 92,7% всех находок, железокаменные 1,3% и железные 5,6%. Каменные метеориты подразделяют на две группы: а) хондриты с мелкими округлыми зернами — хондрами ( 90%); б) ахондриты, не содержащие хондр. Состав каменных метеоритов близок к ультраосновным магматическим породам. По данным М. Ботта, в них около 12% железоникелевой фазы.

На основании анализа состава различных метеоритов, а также полученных экспериментальных геохимических и геофизических данных, рядом исследователей дается современная оценка валового элементарного состава Земли, представленная в таблице.

Повышенное распространение относится к четырем важнейшим элементам — О, Fe, Si, Mg, составляющим свыше 91%. В группу менее распространенных элементов входят Ni, S, Ca, A1. Остальные элементы периодической системы Менделеева в глобальных масштабах по общему распространению имеют второстепенное значение. Если сравнить приведенные данные с составом земной коры, то отчетливо видно существенное различие, заключающееся в резком уменьшении О, Al, Si и значительном увеличении Fe, Mg и появлении в заметных количествах S и Ni.


ЛЕКЦИЯ №2

ЭКЗОГЕННЫЕ ПРОЦЕССЫ

ВЫВЕТРИВАНИЕ

1. Физическое выветривание.

2. Химическое выветривание.

3. Кора выветривания.

4. Коры выветривания и полезные ископаемые.

5. Почвы и почвообразование.

Под выветриванием понимается совокупность физических, химических и биохимических процессов преобразования горных пород и слагающих их минералов в приповерхностной части земной коры. Это преобразование зависит от многих факторов: колебаний температурного, химического воздействия воды и газов — углекислоты и кислорода (находяшихся в атмосфере и в растворенном состоянии в воде), воздействия органических веществ, образующихся при жизни paстений и животных, при их отмирании и разложении. Сказанное свидетельствует о том, что процессы выветривания тесно связаны с взаимодействием приповерхностной частиземной коры с атмосферой, гидросферой и биосферой. Именно граничная область разных фаз обладает высокой реактивной способностью. Часть земной коры, е которой происходит преобразование минерального вещества, называется зоной выветривания илизоной гипергенеза (от греч. «гипер» — над, сверху). Процесс гипергенеза, или выветривания, очень сложен и зависит от климата, рельефа, того или иного органического мира и времени. Разнообразные сочетания перечисленных факторов обусловливают сложность и многообразие хода выветривания. Особенно велика роль климата, являющегося одной из главных причин и движущих сил процессов выветривания. Из всей совокупности климатических элементов наибольшее значение имеют тепло (приходно-расходный баланс лучистой энергии и др.) и степень увлажнения (водный режим). В зависимости от преобладания тех или иных факторов в едином и сложном процессе выветривания условно выделяются два взаимосвязанных типа: физическое выветривание и химическое выветривание.

1. Физическое выветривание.В этом типе наибольшее значение имеет температурное выветривание, которое связано с суточными и сезонными колебаниями температуры, что вызывает то нагревание, то охлаждение поверхностной части горных пород. Вследствие резкого различия теплопроводности, коэффициентов теплового расширения и сжатия и анизотропии тепловых свойств минералов, слагающих горные породы, возникают определенные напряжения. Особенно ярко это выражено в многоминеральных магматических и метаморфических породах (гранитах, сиенитах, габбро, гнейсах, кристаллических сланцах и др.), образовавшихся в глубинах Земли в специфической термодинамической обстановке, в условиях высоких температур и давлений. При выходе на поверхность такие породы оказываются малоустойчивыми, так коэффициент расширения разных пород, образующих минералы, неодинаков. В качестве примера можно привести такие важные noродообразующие минералы гранита, как ортоклаз, альбит и кварц. Коэффициент объемного расширения ортоклаза, например, в три раза меньше, чем у альбита, и в два раза меньше, чем у кварца. Kpoме того, коэффициент расширения даже у одного и того же породообразующего минерала неодинаков по разным кристаллооптическим осям, как, например, у кристаллов кварца и кальцита, что приводит при колебаниях температуры к возникновению местных напряжений и разрушению одноминеральных горных порол, таких, как мрамор, известняки, кварцевые песчаники и др.

Большие различия коэффициента «расширение — сжатие» noродообразующих минералов при длительном воздействии колебаний температуры приводят к тому, что взаимное сцепление отдельных минеральных зерен нарушается, образуются трещины и в конце концов происходит дезинтеграция горных пород, их распад на отдельна обломки различной размерности (глыбы, щебень, песок и др. Дезинтеграции горных пород, возможно, способствуют также конденсация и адсорбция (от лат. «ад» — при, «сорбере» — глотать) водяных паров и пленок на стенках возникающих трещин.

Процесс температурного выветривания, вызывающего механическую дезинтеграцию горных пород, особенно характерен для экстрааридных и нивальных ландшафтов с континентальным климатом и непромывным типом режима увлажнения. Особенно наглядно это проявляется в областях пустынь, где количество выпадающих атмосферных осадков находится в пределах 100—250 мм/год (при колоссальной испаряемости) и наблюдается резкая амплитуда суточных температур на незащищенной растительностью поверхности горных пород. В этих условиях минералы, особенно темноцветные, нагреваются до температур, превышающих температуру воздуха, что и вызывает дезинтеграцию горных пород и на консолидированном ненарушенном субстрате формируются обломочные продукты выветривания. В пустынях наблюдается шелушение, или десквамация (лат. «десквамаре» — снимать чешую), когда от гладкой поверхности горных пород при значительных колебаниях температур отслаиваются чешуи или толстые пластины параллельные поверхности. Этот процесс особенно хорошо можно проследить на отдельных глыбах, валунах. В жарких пустынных областях механическое воздействие на горные породы и их дезинтеграция осуществляются также ростом кристаллов солей, образующихся из вод, которые попадают в капиллярные трещины в виде растворов. При сильном нагревании вода испаряется, а соли, содержащиеся в ней, кристаллизуются, в результате увеличивается давление, капиллярные трещины расширяются, что способствует нарушению монолитности горной породы. Нередко возникают карбонатные пленки. Температурное выветривание весьма активно протекает также на вершинах и склонах гор, не покрытых снегом и льдом, где воздух прозрачный и инсоляция больше, чем в прилежащих низменностях. Более или менее выположенные поверхности гор нередко бывают покрыты глыбово-щебнистыми продуктами выветривания. В то же время на горных склонах наряду с выветриванием развиваются различные гравитационные процессы: обвалы, камнепад, осыпи, оползни. Все данные об указанных гравитационных процессах детально рассмотрены в учебнике по геоморфологии. Здесь же отметим, что накопившиеся в основании склонов и у их подножий продукты гравитационных процессов (осыпей, обвалов) представляют своеобразный генетический тип континентальных отложений, называемый коллювием (отлат. «коллювио»— скопление).

Интенсивное физическое (механическое) выветривание происходит в районах с суровыми климатическими условиями (в полярных и субполярных странах) с наличием многолетней мерзлоты, обусловливаемой ее избыточным поверхностным увлажнением. В эти условиях выветривание связано главным образом с расклинивающим действием замерзающей воды в трещинах и с другими физико-механическими процессами, связанными с льдообразованием. Температурные колебания поверхностных горизонтов горных пород, особенно сильное переохлаждение зимой, приводят к объемно-градиентному напряжению и образованию морозобойных трещин, которые дальнейшем разрабатываются замерзающей в них водой. Известно, что вода при замерзании увеличивается в объеме более, чем на 9%(II. А. Шумский, 1954). В результате развивается давление на стенки крупных трещин, вызывающее большое расклинивающее напряжение, раздробление гордых пород и образование преимущественно глыбового материала. Такое выветривание иногда называют морозным. Расклинивающее воздействие на горшные породы вызывает также корневая система растущих деревьев. Механическую работу производят также разнообразные роющие животные В заключение следует сказать, что чисто физическое выветривание приводит к раздроблению горных пород, к механическому разрушению без изменения их минералогического и химического состава.

2. Химическое выветривание.Одновременно с физическим выветриванием в областях с промывным типом режима увлажнения происходят и процессы химического изменения с образованием новых минералов. При механической дезинтеграции плотных горных пород образуются макротрещины, что способствует проникновению в них воды и газа и, кроме того, увеличивает реакционную поверхность выветривающихся пород. Это создает условия для активизации химических и биогеохимических реакций. Проникновение воды или степень увлажненности не только определяют преобразование горных пород, но обусловливают миграцию наиболее подвижных химических компонентов. Это находит особенно яркое отражение во влажных тропических зонах, где сочетаются высокая увлажненность, термические условия и богатая лесная растительность. Последняя обладает огромной биомассой и значительным опадом. Эта масса отмирающего органического вещества преобразуется, перерабатывается микроорганизмами, в результате в большом количестве возникают агрессивные органические кислоты (растворы). Высокая концентрация ионов водорода в кислых растворах способствует наиболее интенсивному химическому преобразованию горных пород и извлечению из кристаллических решеток минералов катионов, вовлечению их в миграцию.

Особая роль биосферы в геологических процессах была отмечена в работах крупнейшего русского ученого В. И. Вернадского. Он ввел понятие о «живом веществе» как перманентном геологическом деятеле, как аккумуляторе и перераспределителе Солнечной энергии. Он писал: «Захватывая энергию Солнца, живое вещество создает химические соединения, при распадении которых эта энергия освобождается в форме, могущей производить химическую работу»; «живое вещество есть форма активизированной материи и эта энергия тем больше, чем больше масса живого вещества». К процессам химического выветривания относятся окисление, гидратация, растворение и гидролиз,

Окислениеособенно интенсивно протекает в минералах, содержащих железо. В качестве примера можно привести окисление магнетита, который переходит в более устойчивую форму — гематит (FeFe2O4 . Fe2O3). Такие преобразования констатированы в древней коре выветривания КМА, где разрабатываются богатые гематитовые руды. Интенсивному окислению (часто совместно с гидратацией) подвергаются сульфиды железа.

На некоторых месторождениях сульфидных и других железных руд наблюдаются «бурожелезняковые шляпы», состоящие из окисленных и гидратированных продуктов выветривания. Воздух и вода в ионизированной форме разрушают железистые силикаты и превращают двухвалентное железо в трехвалентное.

Гидратация. Под воздействием воды происходит гидратация минералов, т.е. закрепление молекул воды на поверхности отдельных участков кристаллической структуры минерала. Примером гидратации является переход ангидрита в гипс: ангидрит – CaSO4+ 2Н2О CaSO4 . 2H2O — гипс. Гидратированной разновидностью является так-же гидрогётит: гетит — FeOOH + nH2О FeOH . nH2O — гидрогётит. Процесс гидратации наблюдается и в более сложных минералах - силикатах.

Растворение. Многие соединения характеризуются определенной степенью растворимости. Их растворение происходит под действием воды, стекающей по поверхности горных пород и просачивающейся через трещины и поры в глубину. Ускорению процессов растворения способствуют высокая концентрация водородных ионов и содержание в воде О2, CO2 и органических кислот. Из химических соединений наилучшей растворимостью обладают хлориды — галит (поваренная соль)] сильвин и др. На втором месте — сульфаты — ангидрит и гипс.

На третьем месте карбонаты — известняки и доломиты. В процессе растворения указанных пород в ряде мест происходит образование различных карстовых форм на поверхности и в глубине.

Гидролиз.При выветривании силикатов и алюмосиликатов важное значение имеет гидролиз, при котором структура кристаллических минералов разрушается благодаря действию воды и растворенных ней ионов и заменяется новой существенно отличной от первоначальной и присущей вновь образованным гипергенным минералам. В этом процессе происходят:

· каркасная структура полевых шпатов превращается в слоевую, свойственную вновь образованным глинистым гипергенным минералам;

· вынос из кристаллической решетки полевых шпатов растворимых соединений сильных оснований (К, Na, Ca), которые, взаимодействуя с СО2, образуют истинные растворы бикарбонатов и карбонатов (К2Оз, Na2СОз, СаСОз). В условиях промывного режима карбонаты и бикарбонаты выносятся за пределы места их образования. В условиях же сухого климата они остаются на месте, образуют местами пленки различной толщины, или выпадают на небольшой глубине от поверхности (происходит карбонитизация);

· частичный вынос кремнезема;

· присоединение гидроксильных ионов.

Процесс гидролиза протекает стадийно с последовательным возникновением нескольких минералов. Так, при гипергенном преобразовании полевых шпатов возникают гидрослюды, которые затем превращаются в минералы группы каолинита или галуазита.

В умеренных климатических зонах каолинит достаточно устойчив и в результате накопления его в процессах выветривания образуются месторождения каолина. Но в условиях влажного тропического климата может происходить дальнейшее разложение каолинита до свободных окислов и гидроокислов.

Таким образом формируются окислы и гидроокислы алюминия; являющиеся составной частью алюминиевой руды - бокситов.

При выветривании основных пород и особенно вулканических туфов среди образующихся глинистых гипергенных минералов наряду с гидрослюдами широко развиты монтмориллониты (Al2Mg3) [Si4O10](OH)2nH2O и входящий в эту группу высокоглиноземистый минерал бейделлит Аl2(ОН)2[AlSi3O10]nH2O. При выветривании ультраосновных пород (ультрабазитов) образуются нонтрониты, или железистые монтмориллониты (FеAl2)[Si4010](OH)22О. В условиях значительного атмосферного увлажнения происходит разрушение нонтронита, при этом образуются окислы и гидроокислы железа (явление обохривания нонтронитов) и алюминия.

3. Кора выветривания.В результате единого и сложного взаимосвязанного физического, химического и хемобиогенного процессов разрушения горных пород образуются различные продукты выветривания. Остаточные или несмещенные продукты выветривания, остающиеся на месте разрушения материнских (коренных) горных пород, представляют собой один из важных генетических типов континентальных образований и называются элювием. Кора выветривания объединяет всю совокупность различных элювиальных образований. Такая: остаточная кора выветривания называется автоморфной (греч. «аутос» - сам). Помимо первичной автоморфной коры выветривания ряд исследователей (П. И. Гинзбург, Б. А. Ковда, В.В.Добровольский и др.) выделяют вторичную, или гидроморфную, кору выветривания, образующуюся в результате выноса почвенными и грунтовыми водами химических элементов в видеистинных и коллоидных растворов в ходе формирования первичной автоморфной коры. Эти элементы, выносимые растворами, выпадают в виде минералов в пониженных элементах рельефа. Такую взаимосвязь автоморфной и гидроморфной: кор выветривания называют геохимической сопряженностью, что имеет важное значение. Так, например, с автоморфными латеритными корами выветривания с гидроокислами алюминия сочетаются местами расположенные по соседству и орографически ниже залежи бокситов осадочного происхождения.

В истории геологического развития земной коры неоднократно возникали благоприятные условия для образования мощных автоморфных кор выветривания, к числу которых относятся: сочетания высоких температур и влажности, относительно выровненный рельеф, обилие растительности и продолжительность периода выветривания. При достаточно длительном времени выветривания и соответствующих условиях образуются хорошо выраженные зоны коры выветривания, имеющие свои текстурно-структурные особенности и сложенные минералами, отражающими последовательные стадии развития. Значительная мощность и наиболее полный профиль коры выветривания формировался в тропической лесной области, где выделяются следующие зоны: дезинтегрированная гидрослюдисто-монтмориллонитово-бейделлитовая каолинитовая гиббсит-гематит-гётитовая. Благодаря присутствию окислов и гидроокислов А1 и Fe элювий верхней части коры выветривания в сухом состоянии напоминает обожженный кирпич, часто образующий панцири и окрашенный в красный цвет. Поэтомy такие коры выветривания называются латеритными (лат. «латер» —. кирпич). Приведенные данные показывают, что состав полного профиля автоморфной коры выветривания изменяется снизу вверх от свежей исходной породы до продуктов наиболее глубокого гипергеного преобразования.

Б. Б. Полыновым и П. И. Гинзбургом была намечена схема последовательности, или стадийности, процесса выветривания магических пород. Были выделены четыре стадии:

· обломочная, в которой гипергенное преобразование сводится к дроблению, механическому разрушению породы до обломочного материала (обломочный элювий);

· сиаллитная, когда происходит извлечение щелочных, щелочно-земельных элементов, главным образом Са и Na, которые образуют пленки и конкреции кальцита. Поэтому эта стадия называется обызвесткованной;

· кислая сиаллитная, в которой происходят глубокие изменения кристаллохимической структуры силикатов с образованием глинистых минералов (монтмориллонита, нонтронита, каолинита);

· аллитная, когда кора выветривания обогащается окислами железа, а при наличии определенного состава исходных пород — окислами алюминия.

Изложенное представление понимается исследователями как идеализированная схема, иллюстрирующая общую направленность процесса выветривания. Конкретные климатические условия и состав ее горных пород, существовавшие в отдельные этапы геологической истории, могли задерживать или, наоборот, ускорять этот процесс, в результате чего формировались сокращенные и неполные профили вплоть до образования однозонального профиля коры выветривания, как, например, в пустынях и полупустынях элювий состоит преимущественно из различных обломков, щебня, дресвы, образующихся при физическом выветривании, местами с карбонатными пленками. Аналогичный обломочный профиль характерен для тундры. В отличие от указанных, наблюдаются сокращенные и неполные профили в условиях особо высоких температур и интенсивного водообмена, где в ряде случаев выпадают промежуточные зоны, местами вплоть до образования однозонального профиля, состоящего из свободных окислов и гидроокислов железа и алюминия, располагающихся на неизмененных породах.

Кроме того, и в полном профиле коры выветривания вертикальная зональность может быть объяснена не только стадийностью процесса, но и возможностью различия степени химического разложения первичных минералов в верхних и более глубоких зонах профиля. Ведь именно в верхней (приповерхностной) зоне расходуется значительная часть химически и биохимически активных веществ и происходят наиболее интенсивные химические реакции и преобразования первичных минералов в глинистые и даже в свободные окислы и гидроокислы железа и алюминия. Глубже поступают уже обедненные, менее активные растворы, вследствие чего процессы преобразования минералов там замедляются и образуются промежуточные минералы - гидрослюды, монтмориллонит и др. Следует также учитывать избирательный характер выветривания. Не все породы и не все части одной породы выветриваются равномерно. В трещиноватых участках пород выветривание происходит значительно легче, вдоль трещин образуются карманы продуктов выветривания. Кроме того, одни компоненты породы растворяются (или гидролизируются) легче, другие трудней. В слоистых, различных по составу породах также в ряде случаев наблюдается избирательное выветривание. Одни слои более подвержены выветриванию, другие менее, в результате местами возникают останцы более устойчивых слоев (в виде столбов, башен) на фоне продуктов выветривания разрушенных слоев. Среди кор выветривания выделено два основных морфогенетических типа: площадной и линейный. Площадные коры выветривания развиваются в виде покрова или плаща, занимают местами обширные площади до десятков и сотен квадратных километров, представляющие различные выровненные тектонически спокойные поверхности рельефа. Линейные коры выветривания имеют линейное распространение в плане и приурочены к зонам повышенной трещиноватости, к разломам и контактам различных по составу и генезису горных пород. В этих условиях происходит более свободное проникновение воды и связанных с ней химически активных компонентов, что вызывает интенсивный процесс химического выветривания. Кроме того, существует представление, развиваемое В. Н. Разумовой, что в формировании линейных кор выветривания участвуют глубинные гидротермально-вадозные растворы, с которыми связаны миграция химических элементов и, возможно, метасоматическое замещение одних минералов другими. Такой процесс может быть приурочен к разломам и зонам повышенной трещиноватости, где на-6лсдается и наибольшая мощность коры в виде глубоко уходящих карманов. Менее обоснованно влияние гидротермальных растворов на формирование широко распространенных площадных кор выветривания на поверхностях выравнивания.

Древние коры выветривания формировались в различные этапы геологической истории, совпадающие с крупными перерывами в осадконакоплении, они изучены и изучаются в отложениях разного возраста, начиная с докембрия. Самые древние протерозойские коры выветривания отмечены в Карелии и на Украинском кристаллическом щите Русской платформы. Под Москвой глубокими скважинами встречена допалеозойская кора выветривания, представленная преимущественно дресвянистой, гидрослюдистой, иногда каолинитизированной зоной суммарной мощностью около 30 м. Богатые железные руды Курской магнитной аномалии представляют собой древнюю кору выветривания (дораннекаменноугольную), развивавшуюся на метаморфических протерозойских магнетитосодержащих кварцитах. На дислоцированных неизмененных магнетитсодержащих кварцитах располагаются мартитизированные кварциты, выше которых - богатые железные гематитовые руды по железистым кварцитам.

Особенно широко развиты древние коры выветривания мезозойского и мезозойско-кайнозойского времени в Казахстане, на Алтае, в ряде районов Сибири, на Урале и в других местах. Классическим развитием этих кор является Южный и Средний Урал, где они характеризуются большой мощностью и хорошо изучены многими исследователями (И. И. Гинзбургом, В. П. Петровым, Н. П. Херасковым, В. Н. Разумовой и др.). Полный профиль выветривания на серпентинитах Урала отмечается определенной зональностью. В нем неизмененные серпентиниты сменяются выщелоченными, далее монтмориллонитизированными. В пределах развития габбро и долеритов также намечается полный профиль коры выветривания – от дезинтегрированных пород через промежуточные минералы к латеритным бокситам и охрам. Строение площадной древней коры выветривания на гранитах Урала отличается достаточно четко выраженной зональностью: дресвянистая зона гидрослюдистая каолинитовая, суммарной мощностью около 100 м. Здесь же выражена линейная кора выветривания, соответствующая контакту гранита со сланцами и характеризующаяся мощностью около 200 м и отсутствием дресвянистой зоны.

По данным С. Л. Шварцева, зона окисленных руд в Гвинее образуется на хорошо дренируемых возвышенных участках и не всегда сопровождается образованием глинистых минералов. Латеризацию пород он объясняет не только конечными стадиями выветривания (когда образуются окислы и гидроокислы), но и привносом в верхние горизонты коры Fe и А1 путем выщелачивания и миграции их из покрывающих почв.

Своеобразный тип линейной коры выветривания описан В. П. Егоровым и В, М. Новиковым в пределах Ново-Бураневского рудного месторождения Кемпирсайского массива Урала. Здесь в контактной зоне основных пород — габбро и ультраосновных — серпентинитов выражен полный профиль коры выветривания с латеритным бокситом. В профиле выветривания габброидов выделяются четыре минерало-геохимические зоны (снизу вверх): 1) механической дезинтеграции; 2) выщелачивания (гидрохлорит-монтмориллонитовая); 3) каолинито-охристая и 4) гиббсит-каолинито-охристая с латеритным бокситом. Залежи бокситов имеют гнездообразную форму. В центральной части габброидного тела завершает кору выветривания каолинито-охристая зона. Здесь же в профиле коры выветривания серпентинитов выделяются следующие зоны: 1) дезинтегрированных серпентинитов; 2) керолитовых; 3) никельсодержащих нонтронитов; 4) охр. Местами же непосредственно на серпентинитах располагаются никельсодержащие нонтрониты, переходящие в охры.

В работах Н. А. Лисицыной приведены интересные данные о современно-четвертичных корах выветривания южного полушария. Особенностью всех описанных ею типов кор является отсутствие дезинтегрированной зоны и непосредственный переход базальтов в различные глинистые образования и даже в охристую латеритную зону. Так, например, в Индонезийском типе на базальтах располагаются сильно выветрелые гиббсит-каолинитовые образования мощностью до 20 м, выше которых гиббсит-гематит-гётитовые образования конкреционной структуры мощностью 0,3—5,5 м. Наиболее интенсивное разложение базальтов отмечено в Гвинейском типе, где кора состоит яз маломощного (0,5 м) гиббсит-каолинитового горизонта, а выше из гиббсит-гематит-гётитовых образований мощностью около 12 м. Близкие данные получены С. П. Прокофьевым по Западной Гвинее в пределах Фута-Мандингского свода. При этом указывается на возможность проявления во времени двух циклов гипергенеза: 1) позднемеловой -миоценовый и 2) плиоцен-четвертичный.

Рассмотренные примеры показывают, что общий процесс формирования кор выветривания весьма сложен, зависит от сочетания многих факторов и представляет собой несколько взаимосвязанных явлений: 1) разрушение и химическое разложение горных пород с образованием продуктов выветривания; 2) частичный вынос и перераспределение продуктов выветривания; 3) синтез новых минералов в результате взаимодействия продуктов выветривания в ходе их миграция; 4) метасоматическое (греч. «мета» — после, «сома» — тело) замещение минералов материнских пород.

В направленности общего процесса выветривания большая роль принадлежит миграционной способности химических элементов.

4. Изучение строения кор выветривания имеет большое теоретическое значение. Оно позволяет восстанавливать палеогеографическую обстановку времени их формирования. С корами выветривания различного возраста связано много разнообразных и ценных полезных ископаемых — бокситов, железных руд, марганца, руд никеля, кобальта и др. При этом в отдельных случаях в древних корах выветривания металлы накапливаются в значительно большем количестве, чем в исходной породе, и приобретают промышленное значение. Так образовались месторождения никеля, кобальта и других металлов в древней коре выветривания ультраосновных пород Урала. Сюда следует также отнести различные виды глинистых образований кор выветривания, многие из которых являются керамическим и огнеупорным сырьем, обладают отбеливающими и другими свойствами. При этом большое значение имеет изучение и глин, возникших за счет переноса и переотложения глинистых образований автоморфных кор выветривания,

В элювиальных образованиях нередко заключены некоторые россыпные месторождения, такие, как золото, платина, алмазы, касситерит и др., находящиеся в исходных (материнских) породах в рассеянном состоянии. Во время формирования коры выветривания они как химически и механически стойкие вещества высвобождались и обогащали элювиальные образования.

5.Значительные пространства поверхности суши в настоящее время покрыты разнообразными по составу и строению почвами, образующими в совокупности тонкую, но энергетически и геохимически очень активную оболочку, называемую педосферой. Знание свойств и происхождения почв является основой науки почвоведения, находящейся на стыке геологических и биологических наук, основателем которой был великий русский ученый В.В.Докучаев (1846—1903). Широкое развитие учения о почвах проведено за последнее тридцатилетие известными советскими учеными (К. Д. Глинка, В. А. Ковда, М. А. Глазовская, Г.В.Добровольский, Б.Г.Розанов и дp.). Этот период отличается быстрым накоплением новых данных применения экспериментальных методов исследования, расширением области практического применения научных достижений и рекомендаций. По данным Г. В. Добровольского приводится новое расширенное понимание почвы: где говорится, что «почва возникла и развивается в результате совокупного воздействия на горные породы воды, воздуха, солнечной энергии, растительных и животных организмов». Перечисленные факторы свидетельствуют о единстве процессов выветривания и почвообразования.

В формировании почв особенно велика роль органического мира, развитие которого тесным образом связано с климатом. Поэтому почвообразование и сложные биохимические процессы наиболее интенсивно протекают в зоне воздействия корневых систем растений, роющих животных, микроорганизмов и во всем круговороте веществ. В условиях неполного разложения органических остатков образуется относительно устойчивый комплекс органических соединений, называемый перегноем или гумусом (лат. «гумус» — земля). Именно гумус является главным элементом плодородия почв.

В нормальном почвенном профиле выделяется несколько горизонтов сверху вниз:

1. перегнойно-аккумулятивный (A1), в котором, хоть и происходит вымывание, ведущим процессом является накопление гумуса. Мощность его в различных генетических типах почв колеблется от нескольких сантиметров до 1,5 м;

2. элювиальный, или горизонт внутрипочвенного выветривания (А2), который характеризуется преимущественно выносом веществ;

3. иллювиальный (В), в котором имеет место вмывание и накопление вынесенных веществ из других горизонтов почвы;

4. материнские породы (С). Если материнская порода быстро сменяется с глубиной другой породой, то последняя обозначается индексом D. В зависимости от стадии развития процесса и характера почв эти горизонты выражены неодинаково и изменяются в различных климатических зонах.

В основе закона о зональности распределения почв, который был сформулирован в конце XIX в. В. В. Докучаевым, выдвинуто положение о широтной, или горизонтальной, зональности на равнинах и вертикальной - в горных районах. Эти общие закономерности принимаются всеми. Вместе с тем последующие широкоплощадные исследования почв показывают, что в пределах одной и той же климатической зоны при неоднородном составе горных пород и рельефа формируются различные почвы, что отражено на новых картах почвенно-географического районирования. Г. В. Добровольский, признавая зональность почвенного покрова, приводит следующее уточнение: «под почвенной зоной понимается крупный биоклиматогенный ареал преобладания одного автоморфного типа почв с сопутствующими ему другими автоморфными и генетически подчиненными почвами». В зависимости от климата и растительности выделяются следующие типы почв:

1. аркто-тундровые почвы (арктические тундры);

2. тундровые почвы (кустарниковые тундры);

3. подзолистые почва (хвойные леса);

4. серые лесные почвы (широколиственные леса);

5. черноземные почвы (луговые степи);

6. каштановые и бурые почвы (сухие степи);

7. сероземные почвы (пустыни);

8. саванны, коричневые и красные ферритные почвы (влажные субтропические леса);

9. красно-желтые ферралитовые почвы (влажные тропические леса).

 

Как видно из приведенных данных, скорость почвообразования и характер почв существенно отличаются друг от друга, что определяется и биоклиматическими условиями.

ГЕОЛОГИЧЕСКАЯ ДЕЯТЕЛЬНОСТЬ ВЕТРА

1. Дефляция и корразия.

2. Транспортировка.

3. Аккумуляция и эоловые отложения.

 

Ветер - один из важнейших экзогенных факторов, преобразующих рельеф Земли и формирующих специфические отложения. Наиболее ярко эта деятельность проявляется в пустынях, занимающих около 20% поверхности континентов, где сильные ветры сочетаются с малым количеством выпадающих атмосферных осадков (годовое количество не превышает 100—200 мм/год); резким колебанием температуры, иногда достигающим 50°С и выше, что способствует интенсивным процессам выветривания; отсутствием или разреженностью растительного покрова. Особенно большие площади заняты пустынями в Азии, Африке, Австралии, меньше в Европе и Америке. Кроме того, активная деятельность ветра проявляется во внепустынных областях - на побережьях океанов, морей и в крупных речных долинах, не покрытых растительностью, а местами в полупустынях, и даже в умеренном климате. Геологическая работа ветра состоит из следующих видов:

1. дефляция (лат.«дефляцио» — выдувание и развевание);

2. корразия (лат. «корразио»— обтачивание, соскабливание);

3. перенос или транспортировка;

4. аккумуляция (лат. «аккумуляцио»— накопление).

Все указанные стороны работы ветра в природных условиях тесно связаны друг с другом, проявляются одновременно и представляют единый сложный процесс. Можно говорить лишь о том, что в одних местах преобладают одни виды процесса, в других — иные. Все процессы, обусловленные деятельностью ветра, создаваемые ими формы рельефа и отложения называют эоловыми (Эол в древнегреческой мифологии — бог ветров).

1. Дефляция — выдувание и развевание ветром рыхлых частиц горных пород (главным образом песчаных и пылеватых). Известный исследователь пустынь Б, А. Федорович выделяет два вида дефляции: площадную и локальную.

Площадная дефляция наблюдается как в пределах коренных пород, подверженных интенсивным процессам выветривания, так и особенно на поверхностях, сложенных речными, морскими, водноледниковыми песками и другими рыхлыми отложениями. В твердых трещиноватых скальных горных породах ветер проникает во все трещины и выдувает из них рыхлые продукты выветривания.

Поверхность пустынь в местах развития разнообразного обломочного материала в результате дефляции постепенно очищается от песчаных и более мелкоземистых частиц (выносимых ветром) и на месте остаются лишь грубые обломки — каменистый и щебнистый материал. Площадная дефляция иногда проявляется в засушливых степных областях различных стран, где периодически возникают сильные иссушающие ветры — «суховеи», которые выдувают распаханные почвы, перенося на далекие расстояния большое количество ее частиц.

Локальная дефляция проявляется в отдельных понижениях рельефа. Многие исследователи именно дефляцией объясняют происхождение некоторых крупных глубоких бессточных котловин в пустынях Средней Азии, Аравии и Северной Африки, дно которых местами опущено на многие десятки и даже первые сотни метров ниже уровня Мирового океана. Одним из примеров является впадина Карагие в Закаспии, дно которой опущено на 132 м ниже уровня моря. На дне некоторых котловин в верхнем слое пород часто происходит накопление солей. Это может быть связано или с капиллярным подъемом к поверхности днищ соленых подземных вод, или с привнесением солей временными пересыхающими ручьями, или с усыханием мелких водоемов. Подземные и поверхностные воды испаряются, а соли, кристаллизация которых разрывает и разрыхляет породу, превращая ее в тонкую солончаковую пыль, остаются. В жаркие безветренные дни над солончаками днищ котловин вследствие разницы в нагреве различных элементов поверхности часто возникают мощные турбулентные потоки восходящего воздуха (штопороообразные смерчи). Восходящие токи и ветер в течение лета могут вынести весь разрыхленный материал. Ежегодное повторение указанного процесса приводит к дальнейшему углублению дефляционных впадин, или котловин выдувания. Локальная дефляция проявляется также в отдельных щелях и бороздах в горных породах (бороздовая дефляция).

Корразия представляет механическую обработку обнаженных горных пород песчаными частицами, переносимыми ветром, выражающуюся в обтачивании, шлифовании, соскабливании, высверливании и т.п. Этот процесс сходен с применяемым в практике методом чисткикаменных зданий искусственными песчаными струями. Песчаные частицы поднимаются ветром на различную высоту, но наибольшая их концентрация в нижних приземных частях воздушного потока (до 1,0—2,0 м). Сильные длительно продолжающиеся удары песка о нижние части скальных выступов подтачивают и как бы подрезают их, и они утоняются в сравнении с вышележащими. Этому способствуют также процессы выветривания, нарушающие монолитность породы, что сопровождается быстрым удалением продуктов разрушения. Таким образом, взаимодействие дефляции, переноса песка, корразии и выветривания придают скалам в пустынях своеобразные очертания. Некоторые из них грибообразной формы (при изменяющихся направлениях ветра), другие сходны с подточенными столбами или обелисками. При преобладании ветров одного направления, в основании скальных выступов образуются различные корразионно-дефляционные ниши, небольшие пещеры, котлообразные и другие формы.

Академик В. А. Обручев в 1906 г. открыл в Джунгарии, граничащей с Восточным Казахстаном, целый «эоловый город», состоящий из причудливых сооружений и фигур, созданных в песчаниках и пестрых глинах в результате пустынного выветривания, дефляции и корразии. Если на пути движения песка встречаются гальки или небольшие обломки твердых пород, то они истираются, шлифуются по одной или нескольким плоским граням. При достаточно длительном воздействии несомого ветром песка из галек и обломков образуются эоловые многогранники или трехгранники с блестящими отполированными гранями и относительно острыми ребрами между ними. Следует также отметить, что корразия и дефляция проявляются и на горизонтальной глинистой поверхности пустынь, где при устойчивых ветрах одного направления песчаные струи образуют отдельные длинные борозды или желоба глубиной от десятков сантиметров до первых метров, разделенные параллелтными гребнями неправильной формы. Такие образования в Китае называют ярдангами.

2.При движении ветер захватывает песчаные и пылеватые частицы и переносит их на различные расстояния. Перенос осуществляется скачкообразно, или перекатыванием их по дну, или во взвешенном состоянии. Различие переноса зависит от величины частиц, скорости ветра и степени его турбулентности. При ветрах скоростью до 7 м/сек., около 90% песчаных частиц переносится в слое 5—10 см от поверхности Земли, при сильных ветрах (15—20 м/с) песок поднимается на несколько метров. Штормовые ветры и ураганы поднимают песок на десятки метров в высоту и перекатывают даже гальки и плоский щебень диаметром до 3—5 см и более. Процесс перемещения песчаных зерен осуществляется в виде прыжков или скачков под крутым углом от нескольких сантиметров до нескольких метров по искривленным траекториям. При своем приземлении они ударяются и нарушают другие песчаные зерна, которые вовлекаются в скачкообразное движение, сальтацию ( лат. «сальтацио» - скачок). Так происходит непрерывный процесс перемещения множества песчаных зерен. Пески в пустынях переносятся на расстояния от нескольких километров до десятков, а иногда и первых сотен километров. По данным А. Аллисона, в Сахаре мощные песчаные осадки лежат на удалении 160 км от выходов тех песчаников, дезинтеграция которых послужила источником песчаного материала. В ходе перемещения и соударения, сами песчаные зерна подвергаются взаимному истиранию и дроблению.

Пылеватый материал алевритовой размерности может подниматься в воздухе на высоту до 3—4 км и более и переноситься во взвешенном состоянии на сотни и тысячи километров. Известно, что пыль пустынь Африки сильными пассатными ветрами переносится на запад на расстояния более 2000—2500 км и составляет местами заметную примесь в осадках Атлантического океана. Описаны случаи, когда эоловая пыль Сахары достигала различных стран Западной Eвропы.

3.На значительных пространствах пустынь одновременно с дефляцией и переносом происходит аккумуляция и образуются эоловые отложения. Среди них выделяются два основных генетических типа - эоловые пески и эоловые лёссы.

Эоловые пески отличаются значительной отсортированностью, хорошей окатанностью, матовой поверхностью зерен. Это преимущественно мелкозернистые пески, размер зерен которых составляет 0.25-0,1 мм. Самым распространенным в них минералом является кварц, но встречаются и другие устойчивые минералы (полевые шпаты и др.). Менее стойкие минералы, такие, как слюды, в процессе эоловой переработки истираются и выносятся. Цвет эоловых песков различный, чаще всего светло-желтый, бывает желтовато-коричневый, а иногда и красноватый (при дефляции красноземных кор выветривания). В отлаженных эоловых песках наблюдается наклонная или перекрещивающаяся слоистость, указывающая на направления их транспортировки.

Эоловый лёсс (нем. «лёсс» — желтозем) представляет своеобразный генетический тип континентальных отложений. Он образуется при накоплении взвешенных пылеватых частиц, выносимых ветром за пределы пустынь, в их краевые части, и в горные области. Характерным комплексом признаков лёсса является:

· сложение пылеватыми частицами преимущественно алевритовой размерности — от 0,05 до 0,005 мм (более 50%) при подчиненном значении глинистой и тонкопесчанистой фракций и почти полным отсутствием более крупных частиц;

· отсутствие слоистости и однородность по всей толще;

· наличие тонкорассеянного карбоната кальция и известковых стяжений;

· разнообразие минерального состава (кварц, полевой шпат, роговая обманка, слюда и др.);

· пронизанность лёссов многочисленными короткими вертикальными трубчатыми макропорами;

· повышенная общая пористость, достигающая местами 50—60%, что свидетельствует о недоуплотненности;

· просадочность под нагрузкой и при увлажнении;

· столбчатая вертикальная отдельность в естественных обнажениях, что, возможно, связано с угловатостью форм минеральных зерен, обеспечивающих прочное сцепление.

Мощность лёссов колеблется от нескольких до 100 м и более. Особенно большие мощности отмечаются в Китае, образование которых некоторыми исследователями предполагается за счет выноса пылевого материала из пустынь Центральной Азии. Одна из крупных рек Китая «желтая» река (Хуанхэ) получила название вследствие того, что она размывает и переносит во взвешенном состоянии большое количество лёссового материала. Возможность происхождения лёссов в пустынях эоловым путем подтверждается наблюдениями известного исследователя Средней Азии Б. А. Федоровича, по данным которого большое количество выпадает на поверхность, попадая даже на ледники, расположенные на больших высотах. Вместе с тем, лёссы и лёссовидные грунты могут иметь и другое происхождение.

Формы эолового песчаного рельефа. Закономерности формирования песчаного рельефа в пустынях тесным образом связаны с режимом ветров, динамикой атмосферы и ее циркуляцией, мощностью песков и степенью их оголенности. В связи с изменением указанных параметров в пус

– Конец работы –

Эта тема принадлежит разделу:

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И В НЕДРАХ ЗЕМЛИ

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И... В НЕДРАХ ЗЕМЛИ... ПРЕДМЕТ И ЗАДАЧИ ГЕОЛОГИИ Методы геологии Различные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРЕДМЕТ И ЗАДАЧИ ГЕОЛОГИИ.
1.1. Цель и задачи геологии. Связь геологии с другими естественнонаучными дисциплинами. 1.2. Методы геологии. 1.3. Различные направления геологической науки. 1.

ГЕОЛОГИЧЕСКАЯ ИСТОРИЯ ЗЕМЛИ.
1. Догеологический этап 2. Докембрийский этап 3. Палеозойский этап 4. Мезо-кайнозойский этап   1. Историю нашей планеты следует рассматривать тольк

Месторождения полезных ископаемых.
1. Астраханская область расположена в пределах двух разнородных тектонических элементов. Её центральная и северная части, т.е. к северу от широты г. Астрахани расположена в предела

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги