рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГЕОЛОГИЧЕСКАЯ ИСТОРИЯ ЗЕМЛИ.

ГЕОЛОГИЧЕСКАЯ ИСТОРИЯ ЗЕМЛИ. - раздел Геология, ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И В НЕДРАХ ЗЕМЛИ 1. Догеологический Этап 2. Докембрийский Этап 3. Палеозойск...

1. Догеологический этап

2. Докембрийский этап

3. Палеозойский этап

4. Мезо-кайнозойский этап

 

1. Историю нашей планеты следует рассматривать только с того времени, с которого сохранились наиболее древние «свидетели», т.е. горные породы и минералы. Однако первым древнейшим этапом истории Земли считается время, когда в результат аккреции (слипания) вещества газопылевой туманности сформировалась наша планета. Начало аккреции отдалено от современности на 4,66 млрд. лет, а время, в течение которого происходила аккреция, по мнению ряда исследователей, было непродолжительным и вставляло не более 100 млн лет. О его особенностях можно судить только на основе некоторых косвенных данных.

Процессы, протекавшие в это время в недрах земли привели к дифференциации вещества внутри планеты, образованию первичной земной коры основного состава, выделению внешнего жидкого ядра Земли и соответственно к появлению магнитного поля. Появление магнитного поля привело к образованию первичной атмосферы вокруг Земли. Земная поверхность догеологическою этапа напоминала собою поверхность современной Венеры. На Землю воздействовала активная метеоритная бомбардировка, существовала бескислородная атмосфера, в которой облака, состояли из водорода, гелия, паров кислот и углекислого газа, плотным покрывалом закрывая Землю. Стечением времени атмосфера постепенно теряла водород и гелий, которые удалялись в космическое пространство. В конце догеологического этапа атмосфера состояла из аммиака, углекислоты, водяного пара, метана, водорода, инертных газов, борной, плавиковой, соляной и некоторых других сильных кислот. Догеологический этап истории Земли продолжался недолго, лишь до того момента, когда поверхность остыла до температуры существования жидкой воды.

С появлением гидросферы и преобразованием атмосферы наступает качественно новый этап развития Земли, который именуется геологическим.

 

2. Докембрийский этап развития Земли включает в себя два эона – архейский и протерозойский. Архейский эон (3,8-2,6 млрд. лет назад) и протерозой (2,6 млрд. – 570 млн. лет назад) продолжались около 3,5 млрд. лет и составляют 85% времени существования планеты Земля.

Древнейшими породами на Земле являются нижнеархейские, которые слагают щиты самых древних платформ. Эти породы представлены комплексом сильно метаморфизованных магматических пород среднего состава. Кроме этих пород образовывались различные вулканические и магматические породы, а также накапливались кремнистые, песчано-глинистые и карбонатные отложения, свидетельствующие о су­ществовании водных бассейнов в то время.

Земля — единственная планета Солнечной системы, на которой сформировались условия, благоприятные для зарождения и эволюции жизни. Наиболее древние следы органичес­кой жизни установлены в породах, имеющих возраст 3,5-3,8 млрд. лет. Они представлены остатками своеобразных бактерии и виру­сов, которые захоронены в породах и видны под большим увеличе­нием. Архейский зон — это время прокариот, т. е. организмов, не име­ющих клеточного ядра, — бактерий, вирусов и синезеленых водорослей (строматолитов). Жизнь в это время могла существовать только в воде, так как в атмосфере отсутствовал озоновый слой защищающий Землю от ультрафиолетового излучения Солнца, роль которого выполняла толща воды.

В течение протерозойского эона формиро­вались комплексы горных пород более разнообразные, чем в архее. К началу протерозоя земная кора с поверхности остыла настолько, что стала легко подвергаться раздроблению и раскалыванию. Главной особенностью начала протерозойского эона является об­разование первого в истории Земли гигантского единого материка Пангеи в состав которого входили ядра будущих древних платформ (С. Амнриканская, Ю. Американская, Африкано-Аравийская, Сибирская, Восточно-Китайская, Южно-Китайская, Индостанская, Австралийская и Антарктическая).

К середине протерозоя происходит заложение крупных геосинклиналей (Средиземноморской, Тихоокеанской, Урало-Монгольской и др.), что приводит к расколу Пангеи на отдельные материки.

К концу протерозоя на земле происходят активные горообразовательные процессы, получившие название байкальская складчатость, которые привели к увеличению площади платформ и объединению южных материков в суперматерик Гондвана.

Важной чертой протерозойской истории является первое в истории Земли грандиозное оледенение. Следы этого гуронского оледенения обнаружены в разных регионах, в том числе в районе Сахары. Эволюция органической жизни в течение раннего протерозоя происходила весьма медленно. В результате жизнедеятельности синезеленых водорос­лей увеличивается содержание кислорода в атмосфере и гид­росфере. В позднем протерозое появляются прокариоты — организмы, у которых клетки имели обособленные ядра. Воз­никают первые планктонные организмы. В конце протерозоя начался важ­нейший этап развития органического мира докембрия — ста­новление основных видов животного мира, прежде всего многоклеточных. В океане начинают господствовать губки, плеченогие, ракоскорпионы.

 

3. Палеозойская эра распадается на раннюю (570-405 млн. лет назад) и позднюю (405-230 млн. лет назад).

Широко распространены маг­матические и осадочные горные породы. Мета­морфических пород мало.

В раннем протерозое происходит горообразование: огромные территории земного шара охватывает каледонсский этап складчатости, результатом которой стало увеличение площади платформ и объединение Северо-Американской и Восточно-Европейской платформ. В позднем палеозое проявляется герцинская складчатость, охватившая большинство платформ. Основным ее результатом стало присоединение к Северо-Американской и Восточно-Европейской платформам – Сибирской платформы, в результате чего образовался гигантский материк Лавразия. В южном полушарии в это время продолжал существовать суперконтинет Гондвана.

Палеозойская эра, как отмечалось выше, делится на шесть периодов. Рас­смотрим, какие события сменяли друг друга в то время.

Кембрий. В отложениях встречаются все типы морских беспозвоночных животных. Наибольшею развития достигают представители членистоногих — трилобиты — руководящие формы кембрия. Широко распространены черви, медузы, головоногие моллюски. Флора представлена водорослями.

Ордовик. Развиты трилобиты, отличающиеся от кембрий­ских. Появляются гигантские раки, к концу периода — ко­раллы. Развиты бактерии, водоросли, псилофиты. На границе ордовика и силура в атмосфере появляется озоновый слой.

Силур. Отмечаются дальнейшая эволюция трилобитов и появление других форм, отличных от ордовикских и кемб­рийских. Возникают морские лилии, ежи и панцирные рыбы. К концу периода вымирают граптолиты. Резко уменьшается количество трилобитов, продолжают развиваться водоросли и псилофиты.

Девон. Появляются более высокоорганизованные живот­ные. Большого развития достигают панцирные рыбы. Возни­кают двоякодышащие рыбы, хвощи, плауны, папоротники. Обильна флора псилофитов, в конце периода они вымирают. В северных широтах преобладал тропический климат.

Карбон. В море вымирают панцирные рыбы и трилобиты. Отмечается пышное развитие плаунов, папоротников и хво­щей, что обусловило во всех частях света образование зале­жей каменных углей (в карбоне образовалось 24% всех миро­вых запасов угля). Появляются первые крупные амфибии и рептилии. Развиваются насекомые, в частности пауки. В кон­це периода отмечается оледенение южных материков.

Пермь. Вымирают последние трилобиты и четырехлучевые кораллы. Увеличивается количество видов рептилий. Раз­витие голосеменных, гинкговых, цикадовых. Продолжается образование каменного угля (17% мировых запасов). Проис­ходит мощное накопление гипса, ангидрита, каменной и калийных солей.

 

4. Мезозойская эра (230-65 млн. лет назад) характеризуется новыми горообразова­тельными процессами, сопровождаемыми интрузивной и эф­фузивной деятельностью. В эту эру проявляется киммерийская складча­тость. Основным ее результатом стало увеличение площади платформ и распад Лавразии и Гондваны. На месте распада Северной Америки и Евразии и Южной Америки и Африки образуется Атлантический океан, а на месте распада материков Гондваны – Индийский.

В мезозое господствующими формами становятся рептилии. Появляются первые млекопитающие и птицы. В конце эры — первые представители цветковых растений. В мезозойской эре выделяют три периода: триасовый, юрский и меловой.

Триас. Появление аммонитов и белемнитов (головоногих моллюсков), первых костистых рыб, рептилий — динозав­ров, крокодилов, черепах, ящериц, первых карликовых мле­копитающих. В море господствуют рептилии-плезиозавры и ихтиозавры (до 8 м в длину). Флора — цикадовые, голосе­менные, хвойные. Хвощей и папоротников мало. На суше много пустынь.

Юра. Характерно бурное развитие аммонитов и белемни­тов. В морях — водные рептилии (ихтиозавры) и рыбы. Рас­цвет динозавров гигантских размеров (диплодоки достигали 23-30 м в длину). Появление летающих ящеров — птеродак­тилей, первых птиц - археоптерикса, бабочек. Пышная фло­ра: хвойные, гинкговые. цикадовые, папоротники и др. На­блюдается мощное угленакоплепие (до 45% мировых запасов угля).

Мел. В море вымирают аммониты и белемниты (к концу периода). Характерно накопление мощных карбонатных по­род — мела. В морских бассейнах широкое развитие получа­ют костистые рыбы. Появляются змеи и змеевидные морские рептилии — мезозавры, имевшие крупные размеры: 4-6 м в высоту и 25 м в длину. На суше господствуют травоядные и хищные ящеры. Эволюция зубастых птиц приводит к появле­нию первых беззубых птиц. Появляются первые насеко­моядные. Первые цветковые растения (покрытосеменные) за­нимают господствующее положение в конце периода.

Кайнозойская эра (65 млн. лет назад по настоящее время) характеризуется новыми горообразова­тельными процессами, сопровождаемыми интрузивной и эф­фузивной деятельностью. В эту эру проявляется альпийская складча­тость. В это время формируется современный рельеф, материки и океаны принимают современные очертания. Образуются современные горные сооружения Гималаи, Анды, Кордильеры, Кавказ и другие.

Органическая жизнь в кайнозое достигает высшей стадии развития. Господствуют млекопитающие, костистые рыбы, цветковые растения, моллюски. Эволюция органического мира завершается появлением человека.

В кайнозойской эре выделяют три периода: палеогеновый, неогеновый и четвертичный.

Палеоген и неоген ранее объединялись в один третичный период. В это время морские и континентальные осадочные образования преобладают над магматическими.

Широко распространены моллюски, фораминиферы. Пос­ледние дали мощные толщи известняков, например в Крыму Господствующее положение занимают млекопитающие, по­являются высшие млекопитающие — плацентарные. Возни­кают парнокопытные, хищные, хоботовые, китовые, носоро­ги, приматы. Эволюция приматов привела к появлению человека. Повсеместное распространение получили покрыто­семенные растения. В начала палеогена преобладает тропиче­ская и субтропическая флора - пальмы, магнолии, лавры. Она была развита на территории Западной Европы и Европей­ской части России. В палеогене выделяются две климатичес­кие зоны с характерными комплексами растений — тропи­ческая и умеренная. Флора умеренного пояса (дуб, тополь, бук, береза, каштан) произрастала на Новой Земле и Шпиц­бергене, на севере Гренландии и Аляске. Происходит мощ­ное угленакопление (возникают главным образом бурые угли). Формируются современные материки.

Четвертичный период характеризуется глав­ным образом континентальными осадками. В начале периода отмечаются резкое похолодание и повторяющееся оледене­ние в Северном полушарии. Фауна близка к современной. Появляются холодолюбивые животные, мамонты, овцебыки, северные олени, волосатые носороги, пещерные медведи и, в начале периода — человек.

Мы рассмотрели краткую историю развития жизни на Земле. Изучение данного вопроса имеет большое научное и практическое значение. Без данных исторический геологии и палеонтологии было бы невозможно доказать единство орга­нического мира в природе, показать его происхождение и эволюцию.

 

ЛЕКЦИЯ №5

ПРОЦЕССЫ ПРЕОБРАЗОВАНИЯ ЗЕМНОЙ КОРЫ.

ТИПЫ ТЕКТОНИЧЕСКИХ ДВИЖЕНИЙ

 

1. Современные вертикальные движения.

2. Современные горизонтальные движения.

3. Новейшие движения и методы их изучения.

 

Мы привыкли говорить «земная твердь». Однако земная поверхность не остается неподвижной, она «дышит». Одни ее участки в настоящее время испытывают поднятия, другие медленно опускаются. Судить об этих движениях стало возможным только всего лишь несколько веков назад, когда начали использовать точные инструментальные геодезические методы. Сначала это были простые наблюдения, например, делали засечки, отметины на прибрежных скалах морей и озер. Так, известный русский путешественник и геолог И. Д. Черский сделал подобные метки на побережье Байкала, по которым можно было судить о движениях относительно уровня озера.

Знаменитый наглядный пример современных тектонических движений земной поверхности известен в Италии, в маленьком городке Поццуоли, расположенном на берегу Неаполитанского залива. В этом городке находятся развалины городского рынка с часовней, построенной около 2000 лет назад, которую называют «храмом Сераписа». После возведения рыночная площадь вместе с храмом начала медленно опускаться и в XIII в. все строения погрузились под уровень моря. В таком виде они находились около трех столетий, после местность снова начала подниматься и к 1800 г. практически все развалины вместе с фундаментами были осушены. В результате длительного пребывания под водой мраморные колонны храма оказались изъеденными камнеточцами до высоты 5,71 м над полом храма.

В дальнейшем вновь началось опускание и в 1954 г., по свидетельству Г.П. Горшкова, уровень воды составлял уже 2,5 м над полом храма, иными словами, скорость опускания была около 2 см/год. Поццуоли расположен в вулканической области, недалеко находится вулкан Везувий, поэтому неудивительно, что нижняя часть колонн в храме не тронута моллюсками, так как на высоту более трех метров колонны были засыпаны вулканическим пеплом и туфом. Таким образом, это прекрасный пример современных тектонических движений.

Различают современные тектонические движения, происходящие в настоящее время и происходившие несколько веков назад; молодые, или новейшие, отвечающие голоцену, т. е. периоду времени длительностью в 10 000 лет, а также неотектонические, охватывающие интервал, начиная с олигоценовой эпохи палеогена и до голоцена, т. е. около 40 млн. лет. Именно в этот период был сформирован современный рельеф Земли и для изучения данного отрезка геологической истории могут быть использованы разнообразные геоморфологические методы.

1.Примеров современных вертикальных движений можно привести много. Инструментальные методы позволяют установить, что Малый Кавказ поднимается сейчас со скоростью от 8 до 13,5 мм/год; складчатое сооружение Восточных Карпат 1,5-1,7 мм/год; Балтийский щит в Скандинавии также растет и скорость поднятия составляет 8-10 мм/год; в Байкальской рифтовой зоне скорость современных вертикальных движений колеблется от 10 до 20 мм/год, причем наибольшее значение она имеет в районах новейшего базальтового вулканизма. Во многих районах происходят современные опускания. Например, Черноморское побережье Кавказа погружается со скоростью до 12 мм/год; побережье в районе г. Бургас в Болгарии - 2 мм/год; берег западнее Одессы - до 4,3 мм/год. Важной особенностью современных вертикальных тектонических движений является их унаследованность от более древнего структурного плана региона. Такая, по существу, прямая корреляция установлена для Восточно-Европейской платформы, Карпато-Балканского региона, Терско-Каспийского передового прогиба и многих других мест. Подобная унаследованность свидетельствует о том, что древние разломы, складки разного типа, валы и т. д. «живут» и в настоящее время.

2.Геофизические и геодезические методы позволяют точно фиксировать и горизонтальные смещения земной коры. На западе Северной Америки, в Калифорнии расположен сейсмоактивный разлом прослеживающийся более чем на 1000 км при ширине до 20 км. Ввиду частых и сильных землетрясений в этом густонаселенном районе США за поведением разломов ведется пристальное наблюдение вот уже в течение полувека. Разлом Сан-Андреас представляет собой сложную тектоническую зону, состоящую из многочисленных кулисообразных разрывов, по которым в целом устанавливается смещение со скоростью 30-80 мм/год и даже более. Однако по различным сдвигам в разных местах смещения происходят с неодинаковой скоростью, причем она в разные периоды времени также меняется. Мало того, может изменяться и направление перемещения, но суммарно это правый сдвиг, для которого измерения спутников дали в 1978 г. скорость около 94 мм/год. По одним участкам смещение происходит непрерывно, по другим скачкообразно. Смещаются дороги, изгороди заборов, русла оврагов, бетонные желоба для воды. Изучение подобных смещений очень важно для прогноза сейсмической опасности.

На Украинском щите в Криворожском железорудном бассейне раннепротерозойского возраста длительное время наблюдают крупный разлом-сдвиг, смещения по которому за 24 года составили в среднем 10-20 мм/год.

Важные результаты были получены в последние годы с помощью космической геодезии. Лазерные измерения со спутников, в частности с американского «Лагеосат», доказали горизонтальное перемещение крупных литосферных плит. Так, Австралия движется навстречу Тихоокеанской плите со скоростью 46 мм/год. Южная Америка сближается с Австралией со скоростью 28 мм/год; Южная и Северная Америка в районе Карибского бассейна движутся навстречу друг другу - 8 мм/год; Тихоокеанская плита перемещается навстречу Южной Америке - 5 мм/год и т. д. Эти данные очень хорошо совпадают со скоростями движения литосферных плит, вычисленными по линейным магнитным аномалиям океанов. Спутниковые методы позволили достаточно убедительно показать, что крупные литосферные плиты перемещаются по поверхности Земли с довольно большой скоростью.

Методы изучения современных движений различные. Вертикальные перемещения изучаются главным образом методом повторного нивелирования. Именно на такой основе составляются карты современных тектонических движений, например карта движений европейской части России. Такие геодезические наблюдения важны вдоль железнодорожных линий, нефте- и газопроводов, в местах строительства крупных плотин, гидроэлектростанций и АЭС. В настоящее время существует целый ряд специальных геодинамических полигонов, где систематически проводятся повторные высокоточные нивелировки: в районе Ташкента, Ашхабада, поселка Гарм в Таджикистане, на Кольском полуострове, в Терско-Каспийском передовом прогибе и в других местах. Говоря о темпе современных вертикальных движений, следует помнить, что при таких скоростях, которые мы наблюдаем, до 10 и более мм/год и их экстраполяции хотя бы на плейстоцен мы должны были бы видеть горные сооружения более 10 км в высоту. Однако денудация и эрозия компенсируют такое поднятие во времени.

Горизонтальные современные движения измеряются геодезическим методом триангуляции, и, как уже говорилось, для изучения перемещений крупных литосферных плит применяется несколько точных методов: допплеровский, лазерный, использующий отражатели как на суше, так и на Луне, и метод, измеряющий расстояния от квазаров до определенной точки на земной поверхности. Использование всех этих методов и ряда других, измеряющих, в частности, величину деформации и наклонов, показало, что вся поверхность земного шара в настоящее время охвачена как вертикальными, так и горизонтальными движениями, причем последние на порядок и более превосходят первые. Вертикальные движения дифференцированы по площади, особенно в горно-складчатых поясах, а их градиент на платформах намного меньше, чем в горах. Измерение напряженного состояния земной коры в многочисленных горных выработках привело к парадоксальному выводу, заключающемуся в том, что напряжения повсеместного сжатия, которые в них регистрируются, намного превышают величину литостатического давления, возникающего под действием массы вышележащих горных пород. Подобное явление имеет глобальное распространение и еще требует своего объяснения.

3.Неотектонические движения, начавшись около 40 млн. лет назад, привели к созданию современного облика Земли. Правильное понимание развития структур, созданных за это время, имеет очень большое значение для прогноза месторождений нефти и газа, минеральных вод, россыпей, содержащих олово, золото, титан. Для изучения неотектоники применяют разные методы, фиксирующие в основном геоморфологические особенности и эволюцию рельефа. Неотектонические движения выявляются по изучению речных террас в их продольном и поперечном сечении. Составление продольных профилей по речным долинам - один из главных методов изучения неоген-четвертичных тектонических движений. При поднятии реки врезаются, так как возрастает живая сила потока, при опускании накапливаются аллювиальные отложения, слагающие аккумулятивные террасы. От верховий реки в горных областях высотные уровни террас постепенно понижаются в сторону их устья, а в месте выхода реки на предгорную равнину - передовой прогиб - наблюдаются так называемые «ножницы» террас, когда более древние аллювиальные отложения оказываются залегающими ниже молодых, тогда как в горах они располагаются в обратном порядке. В местах «живущих» разломов, поднятий и т. д. поверхность террас испытывает перегибы, деформацию, что и позволяет обнаружить новейшие разломы.

Проиллюстрируем этот метод на примере продольного профиля долины р. Терек на Большом Кавказе вдоль Военно-Грузинской дороги, и изученной в начале 60-х годов Е. Е. Милановским и Н. В. Короновским.

От Крестового перевала до с. Коби наклон русла р. Байдара, притока Терека - очень крутой. Севернее, после слияния Вайд с Тереком, продольный профиль долины последнего выполаживается и при приближении к г. Казбеги, долина становится широкой - 1,5 км и Терек спокойно течет по аккумулятивной равнине. Ниже г. Казбеги продольный профиль вновь становится очень крутым, и Терек образует Дарьяльское ущелье, прорезанное в палеозойских гранитах Гвилетского и Дарьяльского массивов, а затем профиль выполаживается уже около г. Владикавказ. На склонах долины Терека видны узкие обрывки эрозионных и цокольных террас с находящимися на них остатками лавовых потоков вулкана Казбек и его сателлитов.

В конце 50-х годов возникла идея построить около Казбека, как раз в месте перегиба продольного профиля русла Терека, плотину и гидроэлектростанцию. Для этих целей был пробурен ряд скважин глубиной до нескольких сот метров и проведена электроразведка, которая дала неожиданные результаты. Оказалось, что широкая долина Терека выше Казбеги имеет огромное переуглубление и коренное днище долины позднего плейстоцена находится на глубинах около 500 м ниже современного русла реки. В то же время непосредственно севернее Казбеги, т.е. ниже по течению Терека, это же днище поднято над современным руслом реки на 35-45 м. Мало того, в мощной толще аллювиальных и флювиогляциальных образований, выполняющих переуглубленную часть долины, были обнаружены два горизонта озерных межледниковых отложений, причем их северные окончания были «задраны» вверх.

После обнаружения этих фактов картина неотектонических движений и геоморфология района полностью стала ясной. Как мы видим, в районе Казбеги располагается молодой, «живущий» с начала позднего плейстоцена разлом, кстати, сейсмоактивный. Северный блок все это время испытывал поднятие, а южный - опускание. Постоянное подпруживание способствовало формированию озерных отложений в долине Терека и создало то переуглубление, которое мы сейчас наблюдаем. Андезитовые лавовые потоки, изливавшиеся из вулканов, ужавших Казбек, и из самого Казбека, выше Казбеги захоронены и мошной толще верхнеплейстоценовых отложений, а ниже Казбеги, наоборот, подняты над руслом современного Терека. Отсюда следует, что все уровенные поверхности выше Казбеги опущены, а ниже - подняты. Дальнейшее изучение продольного профиля долины р. Терек позволило выявить по деформациям террас еще два крупных новейших разлома - Балтийский и Черногорский, проходящие по южной окраине г. Владикавказ у с. Редант. После обнаружения такой ситуации с новейшими движениями, естественно, от строительства плотины прямо на «живом» разломе отказались. Таким образом, применение одного из геоморфологических методов изучения неотектоники позволило одновременно решить и важную практическую задачу.

Изучение морских террас дает материал для суждения о поднятиях и опусканиях морских побережий и эвстатических колебаниях уровня океана. На Черноморском и Каспийском побережьях располагается целая серия наклоненных в сторону моря террас, наиболее высокие из которых, отвечающие позднему плиоцену, находятся выше +1 км над уровнем моря. В морских террасах высота отсчитывается от их тыльного шва, так как именно там была береговая линия, когда они формировались. Пологая, слегка наклонная поверхность морской террасы является береговой отмелью с морскими аккумулятивными отложениями. Если в дальнейшем произойдет поднятие побережья или понижение уровня моря, начнется выработка новой террасы и т. д. При новейших тектонических движениях поверхности морских террас сами могут деформироваться. Характерный пример в этом отношении представляет Апшеронский полуостров на юго-восточном окончании Большого Кавказа, в пределах которого деформированы все четвертичные террасы, вплоть до самой молодой, голоценовой. Если, скажем, среднеплейстоценовая терраса обычно находится на высоте 200-220 м, то на Апшеронском полуострове она поднята до З00 м. И сам полуостров испытывает, как показал Н.Ш. Ширинов, неравномерные тектонические поднятия и опускания, четко унаследованные от более древнего структурного плана.

Форма рельефа морских берегов указывает на характер движений. Затопление устьев рек и образование эстуариев, например в устье р. Черной в Севастополе, свидетельствуют о происходящем опускании побережья. Все севастопольские бухты смогли образоваться только при таких тектонических процессах. Об этом же свидетельствуют древнегреческие города, развалины которых сейчас находятся на дне Керченского пролива, около г. Сухуми и в других местах.

Очень важные сведения о неотектонических движениях дают поверхности выравнивания различного происхождения, абразионные, денудационные, аккумулятивные. Например, на Юго-Восточном Kавказе выделяются шесть таких поверхностей, причем самая высокая древняя - Шахдагская, располагается на высотах 4200-3500 м, состоит из двух уровней и была выработана в позднем миоцене в сарматском веке, о чем свидетельствуют морские отложения этого возраста, залегающие на абразионной Шахдагской поверхности. Следовательно, район г. Шахдаг был поднят за плиоцен-четвертичное время на четыре с лишним километра. Каждая более низкая поверхность и ее останцы отделяются от более высокой уступом или обрывом, указывающим на прерывистый характер воздымания Кавказа, когда периоды относительного покоя, во время которых и вырабатывалась поверхность выравнивания, прерывались ускоренным поднятием.

Горно-складчатые сооружения чаще всего образуются в виде растущего гигантского свода, осложненного разломами. По мере роста этого свода в спокойные периоды формируются поверхности выравнивания, изучая деформации которых можно выявить историю геоморфологического развития орогена. В других случаях, когда, например, на Тянь-Шане, до начала горообразования существовал пенеплен - выровненная денудационная поверхность, которая; послеолигоценовое время быстро была поднята на большую высоту. Поэтому на Тянь-Шане можно видеть на высотах в 4 км ровные долинные участки, почти равнину, в которую глубоко врезаны речные ущелья. А террасы в этих узких речных долинах фиксируют собой стадии создания реки, т. с. пульсации поднятий, после того как началась регрессивная эрозия и пенеплен был поднят. Возраст поверхности выравнивания определяется по возрасту отложений, приуроченные к ним, если в последних имеются какие-либо палеонтологические остатки, или по другим данным - литологическим, абсолютному возрасту вулканитов и т. д.

Существуют и другие методы изучения неотектонических движений, о которых мы лишь упомянем. Орографический метод базируется на анализе высотных отметок рельефа, и при этом предполагается, что он непосредственно отражает темп тектонических движений. Однако в этом случае не учитываются процессы денудации, эрозии и ряд других факторов. А срез во время поднятий гор может быть очень значительным, например, на Кавказе, с начала его подъема в позднем миоцене, он составил несколько километров. Батиметрический метод используется для исследования подводного рельефа, создаваемого тектоническими движениями. Следует учитывать, что на морском дне важную рельефообразующую роль играют процессы подводного оползания, органогенные постройки (рифы), действие гидротермальных струй («черные курильщики»), течения и др.

Морфологические методы, базирующиеся на анализе топографических карт, аэро- и космоснимков, дают возможность, выделяя речные долины разного порядка и учитывая глубину их врезания, наклоны поверхностей и т. д., выявить и оконтурить положительные и отрицательные структуры. Морфологические методы дают хорошую «отдачу» при использовании в платформенных областях, где позволяют выявлять пологие погребенные поднятия, слабо отражающиеся в рельефе и являющиеся перспективными для поисков залежей нефти и газа. Разновидностей морфологических методов более полусотни, но все они в конце концов сводятся к анализу топографических карт разного масштаба, результаты обработки которых требуют проверки геологическими и геофизическими методами.

В последнее время все шире в геологии используются дистанционные методы, в том числе и космофотоснимки, дешифрирование которых позволяет выявить многие особенности структур, в том числе и неотектонические, ранее ускользавшие от внимания исследователя. По существу все, что дешифрируется на космическом снимке, так или иначе проявляется неотектонически, иначе это просто не было бы видно. Очень важно, что на поверхности Земли «просвечивает» глубинная структура, т.е. происходит своеобразная передача информации. Дело заключается в том, что неотектонические подвижки как бы проявляют более древние и более глубоко залегающие структуры. Зоны повышенной проницаемости - разломы - являются относительно обводненными, что меняет фототон на снимке. По разрывам, испытывающим сжатие, растяжение, смещение и т.д., могут подниматься глубинные газы, флюиды, что сказывается на характере растительного покрова и, следовательно, опять-таки на фототоне. Повышенный тепловой поток по сетке разломов в условиях Западно-Сибирской плиты приводит к более раннему таянию снегов вдоль разломов, поэтому космическая съемка весной дает прекрасный материал для обнаружения линеаментов. Космические снимки представляют возможность почувствовать современную геодинамику неотектонических процессов, во многих случаях унаследованную от древних структурных планов.

Периодичность и ритмичность современных новейших и неотектонических вертикальных движений установлена на многих полигон по данным специальных высокоточных измерений и геоморфологических и геологических наблюдений. Так, для современных движений по материалам повторных высокоточных нивелировок Н.И. Николаев приводит периоды в 37, 8 - 9, 5 - 6 лет и около года. Предполагается, что существуют даже суточные высокочастотные колебаний земной поверхности. Как полагают К.Ф. Тяпкин и А.Г. Бондарук, колебания с годовой периодичностью имеют общепланетарный характер и, возможно, связаны с непрерывно изменяющимся ротационным режимом земного шара, к чему непрерывно вынуждена «приспосабливаться» форма геоида.

Недавно Г. С. Вартаняном и Г. В. Куликовым было сделано интересное открытие, касающееся «гидрогеодеформационного поля» Земли. Было установлено, что на больших пространствах территории России уровень воды в скважинах внезапно начинает быстро повышается, он как бы «возбуждается», а затем так же быстро в течение нескольких суток возвращается в нормальное состояние. В то же время, в соседних районах после спокойного периода начинается подъем ypовня воды, а затем он снова быстро снижается. Было высказано предположение, что подобная ритмичность связана с некоторым кране малым сжатием земной коры, во время которого уровень воды в скважинах повышается. Следующее за сжатием расширение вызывает понижение уровня. Этот процесс периодического сжатия и расширения охватывает всю земную кору и проявляется на ее поверхности неравномерно и то там, то тут как бы «вспыхивают» очаги такого сжатия и расширения. Вполне возможно, что с этим явлением, как считает Н.И. Николаев, связаны кольцевые «структуры - призраки», лишь иногда наблюдаемые со спутников. Структуры то появляются, то исчезают, что обусловлено изменением режима подземных вод, в свою очередь связанным с чередованием сжатия и напряжения в земной коре.

Определенная ритмичность и периодичность неотектонических движений установлена и для более крупных структур, например, для Восточно-Европейской- платформы. Следует помнить о том, что в то же время происходили эвстатические колебания уровня океана, которые накладывались на собственно тектонические движения суши. Так именно на вторую половину олигоцена приходится крупнейшее понижение уровня Мирового океана, превышающее 300 м. Крупнейшие и длительные ритмы новейших движений охватывают гораздо большие площади, чем короткие.

 


ЛЕКЦИЯ №6

ОСНОВНЫЕ СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ

 

Наиболее крупными структурными элементами земной коры являются континенты и океаны, характеризующиеся различным строением земной коры. Следовательно, эти структурные элементы должны пониматься в геологическом, вернее даже в геофизическом смысле, так как определить тип строения земной коры возможно только сейсмическими методами. Отсюда ясно, что не все пространство, занятое водами океана, представляет собой в геофизическом смысле океанскую структуру. Обширные шельфовые области, например, в Северном Ледовитом океане, обладают континентальной корой. Различия между этими двумя крупнейшими структурными элементами не ограничиваются типом земной коры, а прослеживаются и глубже, в верхнюю мантию, которая под континентами построена иначе, чем под океанами, и эти различия охватывают всю литосферу, а места и тектоносферу, т.е. прослеживаются до глубин примерно в 700 км.

В пределах океанов и континентов выделяются менее крупные структурные элементы. Во-первых, это стабильные структуры - платформы, которые могут быть как в океанах, так и на континентах. Они характеризуются, как правило, выровненным, спокойным рельефом, которому соответствует такое же положение поверхности на глубине, только под континентальными платформами она находится на глубинах 30-50 км, а под океанами 5-8 км, так как океанская кора гораздо тоньше континентальной.

В океанах, как структурных элементах, выделяются срединно-океанские подвижные пояса, представленные срединно-океанскими хребтами с рифтовыми зонами в их осевой части, пересеченными трансформными разломами и являющиеся в настоящее время зонами спрединга, т.е. расширения океанского дна и наращивания новообразованной океанской коры. Следовательно, в океанах как структурах, выделяются устойчивые платформы (плиты) и мобильные срединно-океанские пояса.

На континентах как структурных элементах высшего ранга выделяются стабильные области - платформы и эпиплатформенные орогенные пояса, сформировавшиеся в неоген-четвертичное время в устойчивых структурных элементах земной коры после периода платформенного развития. К таким поясам можно отнести современные горные сооружения Тянь-Шаня, Алтая, Саян, Западного и Восточного Забайкалья, Восточную Африку и др. Кроме того, подвижные геосинклинальные пояса, подвергнувшиеся складчатости и орогенезу в альпийскую эпоху, т.е. также в неоген-четвертичное время, составляют эпигеосинклинальные орогенные пояса, такие, как Альпы, Карпаты, Динариды, Кавказ, Копетдаг, Камчатка и др.

На территории некоторых континентов, в зоне перехода континент-океан (в геофизическом смысле) находятся окраинно-континентальные, по терминологии В. Е Хаина, подвижные геосинклинальные пояса, представляющие собой сложное сочетание окраинных морей, островных дуг и глубоководных желобов. Это пояса высокой современной тектонической активности, контрастности движений, сейсмичности и вулканизма. В геологическом прошлом функционировали и межконтинентальные геосинклинальные пояса, например Урало-Охотский, связанный с древним палео-Азиатским океанским бассейном, и др.

Учение о геосинклиналях в 1973 г. отметило свое столетие с того времени, как американский геолог Д. Дэна ввел это понятие в геологию, а еще раньше, в 1857 г., также американец Дж Холл сформулировал в целом эту концепцию, показав, что горно-складчатые структуры возникли на месте прогибов, ранее выполнявшихся разнообразными морскими отложениями. В силу того, что общая форма этих прогибов была синклинальной, а масштабы прогибов очень большими, их и назвали геосинклиналями.

За прошедшее столетие учение о геосинклиналях набирало силу, разрабатывалось, детализировалось и благодаря усилиям большой армии геологов различных стран сформировалось в стройную концепцию. Она представляет собой эмпирическое обобщение огромного фактического материала, но страдает одним существенным недостатком. Эта концепция не давала, как совершенно справедливо полагает В. Е. Хаин, геодинамической интерпретации наблюдаемых конкретных закономерностей развития отдельных геосинклиналей. Устранить этот недостаток в настоящее время способна концепция тектоники литосферных плит, возникшая всего лишь 25 лет назад, но быстро превратившаяся в ведущую геотектоническую теорию. С точки зрения этой теории геосинклинальные пояса возникают на границах взаимодействия различных литосферных плит. Рассмотрим основные структурные элементы земной коры более подробно.

Древние платформы являются устойчивыми глыбами земной коры, сформировавшимися в позднем архее или раннем протерозое. Их отличительная черта - двухэтажность строения. Нижний этаж, или фундамент сложен складчатыми, глубоко метаморфизованными толщами пород, прорванными гранитными интрузивами, с широким развитием гнейсовых и гранито-гнейсовых куполов или овалов - специфической формой метаморфогенной складчатости. Фундамент платформ формировался в течение длительного времени в архее и раннем протерозое и впоследствии подвергся очень сильному размыву и денудации, в результате которых вскрылись породы, залегавшие раньше на большой глубине. Площадь древних платформ на материках приближается к 40% и для них характерны угловатые очертания с протяженными прямолинейными границами - следствием краевых швов (глубинных разломов). Складчатые области и системы либо надвинуты на платформы, либо граничат с ними через передовые прогибы, на которые в свою очередь надвинуты складчатые орогены. Границы древних платформ резко несогласно пересекают их внутренние структуры, что свидетельствует об их вторичном характере в результате раскола суперматерика Пангеи-1, возникшего в конце раннего протерозоя.

Верхний этаж платформ представлен чехлом, или покровом полого залегающих с резким угловым несогласием на фундаменте неметаморфизованных отложений - морских, континентальных и вулканогенных. Поверхность между чехлом и фундаментом отражает самое важное структурное несогласие в пределах платформ. Строение платформенного чехла оказывается сложным и на многих платформах на ранних стадиях его образования возникают грабены, грабенообразные прогибы - авлакогены (от греч. «авлос» - борозда, ров; «ген» - ; рожденный, т.е. рожденные рвом), как их впервые назвал Н. С. Шатский. Авлакогены чаше всего формировались в позднем протерозое и образовывали в теле фундамента протяженные системы. Мощность континентальных и реже морских отложений в авлакогенах достигает 5-7 км, а глубокие разломы, ограничивавшие авлакогены, способствовали проявлению щелочного, основного и ультраосновного магматизма, а также специфического для платформ траппового магматизма с континентальными толеитовыми базальтами, силами и дайками. Этот нижний структурный ярус платформенного чехла, соответствующий авлакогенному этапу развития, сменяется сплошным чехлом платформенных отложений, чаще всего начинающимся с вендского времени.

Среди наиболее крупных структурных элементов платформ выделяются щиты и плиты. Щит - это выступ на поверхность фундамента платформы, который на протяжении всего платформенного этапа развития испытывал тенденцию к поднятию. Плита - часть платформы, перекрытая чехлом отложений и обладающая тенденцией к прогибанию. В пределах плит различаются более мелкие структурные элементы. В первую очередь это синеклизы - обширные плоские впадины, под которыми фундамент прогнут, и антеклизы - пологие своды с поднятым фундаментом и относительно утоненным чехлом. По краям платформ, там, где они граничат со складчатыми поясами, часто образуются глубокие впадины, называемые перикратонными (т.е. на краю кратона, или платформы). Нередко антеклизы и синеклизы осложнены второстепенными структурами меньших размеров: сводами, впадинами, валами. Последние возникают над зонами глубоких разломов, крылья которых испытывают разнонаправленные движения и в чехле платформы выражены узкими выходами древних отложений чехла из-под более молодых. Углы наклона крыльев валов не превышают первых градусов. Часто встречаются флексуры - изгибы слоев чехла без разрыва их сплошности и с сохранением параллельности крыльев, возникающие над зонами разломов в фундаменте при подвижке его блоков. Все платформенные структуры очень пологие и в большинстве случаев непосредственно измерить наклоны их крыльев невозможно.

Состав отложений платформенного чехла разнообразный, но чаще всего преобладают осадочные породы - морские и континентальные, образующие выдержанные пласты и толщи на большой площади. Весьма характерны карбонатные формации, например, белого писчего мела, органогенных известняков, типичных для гумидного климата и доломитов с сульфатными осадками, образующимися в аридных климатических условиях. Широко развиты континентальные обломочные формации, приуроченные, как правило, к основанию крупных комплексов, отвечающих определенным этапам развития платформенного чехла. На смену им нередко приходят эвапоритовые или угленосные паралические формации и терригенные - песчаные с фосфоритами, глинисто-песчаные, иногда пестроцветные. Карбонатные формации знаменуют собой обычно «зенит» развития комплекса, а далее можно наблюдать смену формаций в обратной последовательности. Для многих платформ типичны покровно-ледниковые отложения.

Платформенный чехол в процессе формирования неоднократно претерпевал перестройку структурного плана, приуроченную к рубежам крупных геотектонических циклов: байкальского, каледонского, герцинского, альпийского и др. Участки платформ, испытывавшие максимальные погружения, как правило, примыкают к той пограничной с платформой подвижной области или системе, которая в это время активно развивалась.

Для платформ характерен и специфический магматизм, проявляющийся в моменты их тектоно-магматической активизации. Наиболее типична трапповая формация, объединяющая вулканические продукты – лавы, туфы и интрузивы, сложенные толеитовыми базальтами континентального типа с несколько повышенным по отношению к океанским содержанием оксида калия, но все же не превышающим 1-1,5%. Объем продуктов трапповой формации может достигать 1—2 млн км3 , как, например, на Сибирской платформе. Очень важное значение имеет щелочно-ультраосновная (кимберлитовая) формация, содержащая алмазы в продуктах трубок взрыва (Сибирская платформа, Южная Африка).

Кроме древних платформ выделяют и молодые, хотя чаще их называют плитами, сформировавшимися либо на байкальском, каледонском или герцинском фундаменте, отличающемся большой дислоцированностью чехла, меньшей степенью метаморфизма пород фундамента и значительной унаследованностью структур чехла от структур фундамента. Примерами таких платформ (плит) являются эпибайкальская Тимано-Печорская, эпигерцинская Скифская, эпипалеозойская Западно-Сибирская и др.

Подвижные геосинклинальные пояса являются чрезвычайно важным структурным элементом земной коры, обычно располагающимся в зоне перехода от континента к океану и в процессе эволюции формирующим мощную континентальную кору. Смысл эволюции геосинклинали заключается в образовании прогиба в земной коре в условиях тектонического растяжения. Этот процесс сопровождается подводными вулканическими излияниями, накоплением глубоководных терригенных и кремнистых отложений. Затем возникают частные поднятия, структура прогиба усложняется и за счет размыва поднятий, сложенных основными вулканитами, формируются граувакковые песчаники. Распределение фаций становится более прихотливым, появляются рифовые постройки, карбонатные толщи, а вулканизм становится более дифференцированным. Наконец, поднятия разрастаются, происходит своеобразная инверсия прогибов, внедряются гранитные интрузивы и все отложения сминаются в складки. На месте геосинклинали возникает горное поднятие, перед фронтом которого растут передовые прогибы, заполняемые молассами - грубообломочными продуктами разрушения гор, а в последних развивается наземный вулканизм, поставляющий продукты среднего и кислого состава - андезиты, дациты, риолиты. В дальнейшем горно-складчатое сооружение размывается, так как темп поднятий падает, и ороген превращается в пенепленизированную равнину. Такова общая идея геосинклинального цикла развития.

Успехи в изучении океанов привели в 60-е годы нашего века к созданию новой глобальной геотектонической теории – тектоники литосферных плит, позволившей на актуалистической основе воссоздать историю развития подвижных геосинклинальных областей и перемещения континентальных плит. Суть этой теории заключается в выделении крупных литосферных плит, границы которых маркируются современными поясами сейсмичности, и во взаимодействии плит путем их перемещения и вращения. В океанах происходит наращивание, расширение океанской коры путем ее новообразования в рифтовых зонах срединно-океанских хребтов. Поскольку радиус Зeмли существенно не меняется, новообразованная кора должна поглощаться и уходить под континентальную, т.е. происходит ее субдукция (погружение). Эти районы отмечены мощной вулканической деятельностью, сейсмичностью, наличием островных дуг, окраинных глубоководных желобов, как, например, на восточной периферии Евразии. Все эти процессы отмечают собой активную континентальную окраину, т.е. зону взаимодействия океанской и континентальной коры. Напротив, те участки континентов, которые составляют с частью океанов единую литосферную плиту, как, например, по западной и восточной окраине Атлантики, называются пассивной континентальной окраиной и лишены всех перечисленных выше признаков, но характеризуются мощной толщей осадочных пород над континентальным склоном. Сходство вулканогенных и осадочных пород ранних стадий развития геосинклиналей, так называемой офиолитовой ассоциации, с разрезом коры океанского типа позволило предположить, что последние закладывались на океанской коре и дальнейшее развитие океанского бассейна приводило сначала к его расширению, а затем закрытию с образованием вулканических островных дуг, глубоководных желобов и формированию мощной континентальной коры. В этом видят сущность геосинклинального процесса.

Таким образом, благодаря новым тектоническим идеям, учение о геосинклиналях обретает как бы «второе дыхание», позволяя реконструировать геодинамическую обстановку их эволюции на основе актуалистических методов. Исходя из сказанного, под геосинклинальным поясом (окраинно- или межконтинентальным) понимается подвижной поя протяженностью в тысячи километров, закладывающийся на границе литосферных плит, характеризующийся длительным проявлением разнообразного вулканизма, активного осадконакопления и на конечных стадиях развития превращающийся в горно-складчатое сооружение с мощной континентальной корой. Примером таких глобальных поясов являются: межконтинентальные - Урало-Охотский палеозойский; Средиземноморский альпийский, Атлантический палеозойский; окраинно-континентальные - Тихоокеанский мезозойско-кайнозойский и др. Геосинклинальные пояса разделяются на геосинклинальные области - крупные отрезки поясов, отличающиеся историей развития, структурой и отделяющиеся друга глубокими поперечными разломами, пережимами и т.д. В свою очередь, в пределах областей могут быть выделены геосинклинальные системы, разделяющиеся жесткими блоками земной коры - срединными массивами или микроконтинентами, структурами, которые во время погружения окружающих районов оставались стабильными, относительно приподнятыми и на которых накапливался маломощный чехол. Как правило, эти массивы являются обломками той первичной древней платформы, которая подверглась дроблению при заложении подвижного геосинклинального пояса.

В конце 30-х годов нашего столетия Г. Штилле и М. Кэй подразделили геосинклиналии на эвгеосинклинали и миогеосинклинали. Эвгеосинклиналью («полной, настоящей, геосинклиналью») они называли более внутреннюю по отношению к океану зону подвижного пояса, отличавшуюся особо мощным вулканизмом, ранним (или начальным) подводным, основного состава; наличием ультраосновных интрузивных (по их мнению) пород; интенсивной складчатостью и мощным метаморфизмом. В то же время миогеосинклиналь («не настоящая геосинклиналь») характеризовалась внешним положением (по отношению к океану), контактировала с платформой, закладывалась на коре континентального типа, отложения в ней были слабее метаморфизованы, вулканизм также был развит слабо или совсем отсутствовал, а складчатость наступала позднее, чем в эвгеосинклинали Такое разделение геосинклинальных областей на эв- и миогеосинклинальные прекрасно выражено на Урале, в Аппалачах, Североамериканских Кордильерах и в других складчатых областях

Важную роль стала играть офиолитовая ассоциация пород, широко распространенная в разнообразных эвгеосинклиналях. Нижняя часть разреза такой ассоциации состоит из ультраосновных, часто сер-пентинизированных пород - гарцбургитов, дунитов, выше располагается так называемый расслоенный или кумулятивный комплекс габброидов и амфиболитов, еще выше - комплекс параллельных даек, сменяющийся подушечными толеитовыми базальтами, перекрываемыми кремнистыми сланцами. Такая последовательность близка разрезу океанской коры. Значение этого сходства трудно переоценить. Офиолитовая ассоциация в складчатых областях, залегающая, как правило, в покровных пластинах, является реликтом, следами былого морского бассейна (не обязательно океана) с корой океанского типа. Отсюда не следует, что океан отождествляется с геосинклинальным поясом. Кора океанского типа могла располагаться только в его центре, а по периферии это была сложная система островных дуг, окраинных морей, глубоководных желобов и т.д., да и сама кора океанского типа могла быть в окраинных морях. Последующее сокращение океанского пространства приводило к сужению подвижного пояса в несколько раз. Океанская кора в основании эвгеосинклинальных зон может быть как древней, так и новообразованной, сформировавшейся при раскалывании и раздвиге континентальных массивов.

В развитии геосинклинальных подвижных поясов, областей и систем в самом обобщенном виде выделяются два основных этапа: собственно геосинклинальный и орогенный. В первом из них различают две главные стадии: раннегеосинклинальная и позднегеосинклинальная. В последнее время наметилось выделение еще и предгеосинклинальной стадии, отвечающей формированию системы пологих впадин, сменяющихся раскалыванием континента и образованием рифтов, сопровождаемых накоплением грубообломочных отложений за счет размыва плечей рифтов, щелочным - основным и щелочным - ультраосновным магматизмом. Такая предгеосинклинальная стадия хорошо документируется в Урало-Охотском и Атлантическом поясах, т.е. в подвижных геосинклинальных поясах межконтинентального типа. В окраинно-континентальных поясах подобная стадия может заключаться либо в образовании вулканических дуг на коре океанского типа, либо в откалывании крупных блоков от континентов, формированием окраинных морей и островных дуг, как, например, на востоке Евразии.

Раннегеосинклинальная стадия характеризуется процессами растяжения, расширения океанского дна путем спрединга и одновременно сжатия в краевых зонах, где возникают наклонные сейсмофокальные зоны Беньофа, приуроченные преимущественно к границам континентальных и океанских плит. Для ранней стадии характерны кремнисто-вулканогенные толщи, залегающие на габброидах и дайковом комплексе 2-го слоя океанской коры. Вулканиты представлены подушечными базальтовыми лавами, спилитами и т.д. В краевых зонах накапливается сланцевая (аспидная) формация - мощные глинистые толщи; сланцево-базальтовые образования; внедряются силлы и дайки габброидов. Следовательно, для ранней стадии развития геосинклиналей наиболее характерны сланцево-кремнисто-вулканогенные толщи огромной (до 10-15 км) мощности, впоследствии испытавшие и самый сильный метаморфизм.

Позднегеосинклинальная стадия начинается в момент усложнения внутренней структуры подвижного пояса. Оно обусловлено процессами сжатия, проявляющимися все сильнее в связи с начинающимися закрытием океанского бассейна и встречным движением литосферных плит. Все это приводит к поглощению океанской коры в зонах субдукции, образованию сейсмофокальных зон Беньофа и появлению вулканических островных дуг, возникновению впадин тыловых (окраинных) морей. Можно сказать, что это время господства островных дуг, недаром стадия иногда называется островодужной. В данное время преобладают вулканические продукты дифференцированных базальт-андезит-дациттриолитовых серий, причем резко возрастает эксплозивность магмы, что приводит к формированию мощных толщ туфов и туфобрекчий, которые, смешиваясь с терригенными осадками, образуют столь характерные для этой стадии вулканогенно-обломочные толщи. Кроме вулканических, на данной стадии образуются и невулканические дуги.

Поздние стадии развития геосинклиналей отмечены образованием флишевой формации, состоящей из терригенных и карбонатно-терригенных пород, прослойки которых мощностью в единицы и десятки сантиметров ритмично чередуются в толще до нескольких километров. Ритм начинается с более грубого песчаника, гравелита, сменяется тонким песчаником и алевролитом и заканчивается аргиллитом и карбонатными породами. Флиш образуется из мутьевых, или турбидных потоков, которые многократно, подобно лавинам, скатываются с континентального склона и, растекаясь на большие расстояния, постепенно отлагают взвешенные частицы, более грубые из которых, естественно, выпадают первыми. Дальнейшие сжатие и сокращение пояса приводят к образованию тектонических покровов, фронтальная разрушающая часть которых дает начало обвальным и под водно-оползневым толщам - олистостромам, с включенными в них пластинами пород - олистоплаками и отдельными глыбами - олистолитами. Олистостромы бывают тесно связаны с серпентинитовым меланжем, образовавшимся при сжатии и выдавливании в виде покровов пород офиолитовой ассоциации. На этой стадии развития все толщи, особенно на глубине, подвергаются региональному метаморфизму с участием флюидов, происходит складчатость, формируются крупные гранитные интрузивы – батолиты с увеличенным содержанием калия, что свидетельствует о существовании мощной континентальной коры.

Орогенный этап сменяет позднегеосинклинальную стадию и, правило (но не всегда), тоже состоит из ранне- и позднеорогенных стадий. На первой из них темп поднятия орогена еще невелик, он слаба расчленен и в заложившихся перед его фронтом передовых прогибах накапливаются тонкообломочные породы - тонкие молассы, часто сосуществующие в зависимости от климатических условий с соленосными и угленосными толщами. В позднюю стадию горное сооружение растет быстрее, оно расширяется, передовые прогибы как бы «накатываются», смещаются в сторону платформ и заполняются грубообломочной молассой. В самих горных сооружениях возникают межгорные впадины, нередко развивающиеся на срединных массивах. Для орогенного этапа очень характерен наземный среднещелочной андезит-дацит-риолитовый вулканизм с формированием крупных стратовулканов и вулкано-тектонических впадин, выполнение игнимбритами. С вулканитами тесно связаны интрузивы такого же состава, образующие вулкано-плутоническую формацию. На этой стадии могут возникать так называемые краевые вулканические пояса, маркирующие протяженные зоны разломов, возможно в местах столкновения плит, или древние зоны Беньофа. Образовавшийся горноскладчатый эпигеосинклинальный пояс в конце концов начинает разрушаться, подвергается растяжению и в нем возникают наложенные грабены, заполненные либо угленосными, либо континентальными терригенно-вулканогенными отложениями. Такой процесс называется тафрогенезом.

Последовательность событий в развитии подвижного геосинклинального пояса следует понимать только как некую самую общую картину. В действительности, практически каждая геосинклинальная область и система обладают индивидуальными чертами, одни этапы и стадии в них «смазаны», другие, наоборот, проявлены ярче.

После сказанного целесообразно вернуться к современным структурным элементам земной коры. Как мы убедились, в настоящее время на земном шаре выделяются континенты, океаны и переходные зоны между ними. По существу, вся история геологического развития сводится к взаимодействию между этими структурными элементами. Континенты меняли свои очертания, размеры, форму и местоположение. Океаны то возникали, то исчезали. Переходные зоны не оставались фиксированными ни во времени, ни в пространстве. То, что раньше называли геосинклиналями, как раз и представляют переходные, очень сложные зоны вместе с океанами или их частями. Именно на их месте и возникли те складчатые или горно-складчатые пояса, которые мы наблюдаем в настоящее время на континенте. Однако достоверно реконструировать историю развития таких складчатых поясов иногда просто невозможно. Это особенно касается палеозойской истории, не говоря уже о рифейской или более ранней. Развитие океана Тетис, располагавшегося между Африкано-Аравийским и Евразийским континентами, также реконструирован пока далеко не однозначно. Все это вынуждает нас частично использовать старую терминологию, наполняя ее содержание новым смыслом.

ПРЕДСТАВЛЕНИЯ О РАЗВИТИИ СТРУКТУРЗЕМНОЙ КОРЫ

Каким образом происходит деформация отложений и земной коры в целом? Каков механизм поднятий и опусканий? Почему в одних местах мы видим мощные горно-складчатые цепи, а в других - обширные плоские равнины? Каковы причины тектонических движений? Все эти и еще множество подобных вопросов всегда волновали умы естествоиспытателей, но ответить на них и осознать связь геологических явлений долгое время было очень трудно. И только во второй половине XVIII в. немецкие ученые А. фон Гумбольдт и Л. фон Бух вслед за М. В. Ломоносовым сформулировали гипотезу «кратеров поднятия», которая заключалась в признании существенной, роли магмы и вулканизма, вызывающих поднятия гор. Эта гипотеза пользовалась известной популярностью, пока ей на смену в середине XIX в. не пришла гипотеза контракции французского геолога Эли де Бомона. Фундаментом ее служили космогонические представления Канта и Лапласа о первично расплавленной Земле, которая затем постепенно охлаждалась. Вполне естественно, что уменьшение внутреннего объема Земли при охлаждении должно было вызвать коробление ее поверхностной оболочки - земной коры. Так, по мнению Эли де Бомона, возникают складчатые горные сооружения подобно гигантским «морщинам». Однако на вопросы, почему горно-складчатые цепи располагаются именно так, а не иначе и почему этот процесс был периодическим, гипотеза контракции не могла дать удовлетворительный ответ.

Трудности в объяснении расположения горных цепей были сняты, когда в середине XIX в. появилось учение о геосинклиналях. Стало понятным, что горно-складчатые сооружения возникают там, где раньше были прогибы, заполнявшиеся морскими отложениями. На рубеже веков вышло в свет выдающееся произведение Э. Зюсса «Лик Земли», в котором за основу была взята контракционная гипотеза. Надо сказать, что подавляющее большинство геологов считали эту тектоническую гипотезу наиболее приемлемой и не сомневались в ее истинности. Но как только на повестку дня встал вопрос об изначально холодной Земле, сформировавшейся из газопылевой туманности, гипотеза контракции оказалась несостоятельной, так как холодная Земля не могла сжиматься.

Казалось, выход был найден пульсационной гипотезой В. Бухера, М А. Усова и В. А. Обручева, которая базировалась на предположении о периодическом, пульсационном изменении объема Земли, причины которого были неизвестны. Когда объем увеличивался, наблюдалось растяжение на поверхности, образование прогибов - геосинклиналей, активный магматизм и т.д. При сокращении объема, наоборот, происходило сжатие, складко- и горообразование. При таком подходе фазы складчатости на Земле, естественно, должны происходить строго одновременно, хотя мы знаем, что в то время, когда в одном peгионе происходила складчатость, в другом - растяжение. Иными словами, одновременности однотипных процессов не наблюдается.

В начале века существовала гипотеза подкоровых течений австрийского тектониста О. Ампферера, заключавшаяся в предположении о том, что складчатость возникает при пододвигании жестких блоков коры под геосинклинали, отложения которой в этом случае будут деформироваться. Пододвигание объяснялось течениями в пластичных размягченных слоях, располагавшихся под земной корой. Распад радиоактивных элементов уже привлекался в конце 20-х годов в качестве того «горючего», которое приводит в действие «тепловую машину» и обеспечивает конвекцию в мантии.

Но вот в 1912 г. немецкий геофизик А. Вегенер вслед за африканцем Ф. Тейлором сформулировал гипотезу дрейфа материков, которой после долгих лет забвения посчастливилось вновь стать, правда, в измененном виде, ведущей тектонической концепцией. А. Вегенер, основываясь на сходстве очертаний материков по обе стороны Атлантики, наличии покровного позднепалеозойского оледенения на южных (Гондванских) континентах, а также общности геологических структур, флоры и наземной фауны ныне разобщенных материков, сделал вывод о том, что раньше они были соединены в один гигантский материк Пангею. Раскалывание этого материка и расхождение континентов объяснялось ротационными силами земного шара и некоторым проскальзыванием земной коры по мантии. Встреченная сначала с интересом в ряде стран, в том числе и в России, эта гипотеза подверглась впоследствии «остракизму» и, по существу, была забыта как в корне противоречащая наблюдаемым в то время фактам.

В конце 30-х годов в СССР В. В. Белоусовым была разработана новая тектоническая концепция глубинной дифференциации вещества, или радиомиграционная. Автор поставил вопрос об источнике эндогенной энергии и пришел к выводу, что таковым может быть самопроизвольный распад радиоактивных элементов, содержащихся в породах коры и мантии. Примерно такая же гипотеза была сформулирована и голландским геологом ван Беммеленом и названа им «ундационной» (от слова «волна»), так как основной процесс сводился к поднятиям и опусканиям в виде своеобразных волн. На протяжении последних десятилетий гипотеза глубинной дифференциации вещества продолжала разрабатываться В. В. Белоусовым и в настоящее время сводится к следующим основным положениям. Дифференциация вещества на границе внешнего ядра и мантии способствует подъему легких компонентов вверх и опусканию тяжелых вниз. Легкий разогретый материал скапливается под

– Конец работы –

Эта тема принадлежит разделу:

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И В НЕДРАХ ЗЕМЛИ

ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ НА ПОВЕРХНОСТИ И... В НЕДРАХ ЗЕМЛИ... ПРЕДМЕТ И ЗАДАЧИ ГЕОЛОГИИ Методы геологии Различные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГЕОЛОГИЧЕСКАЯ ИСТОРИЯ ЗЕМЛИ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПРЕДМЕТ И ЗАДАЧИ ГЕОЛОГИИ.
1.1. Цель и задачи геологии. Связь геологии с другими естественнонаучными дисциплинами. 1.2. Методы геологии. 1.3. Различные направления геологической науки. 1.

ВНУТРЕННЕЕ СТРОЕНИЕ ЗЕМЛИ.
Земля сложена несколькими оболочками – внешними (атмосфера, гидросфера, биосфера) и внутренними, которые называют геосферами (ядро, мантия, литосфера). Изучение внутреннего строения Земли производи

Месторождения полезных ископаемых.
1. Астраханская область расположена в пределах двух разнородных тектонических элементов. Её центральная и северная части, т.е. к северу от широты г. Астрахани расположена в предела

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги