Свойства решений.

Пусть ЗПЛ представлена в следующей записи:

(7)

(8)

(9)

Чтобы задача (7) – (8) имела решение, системе её ограничений (8) должна быть совместной. Это возможно, если r этой системы не больше числа неизвестных n. Случай r>n вообще невозможен. При r= n система имеет единственное решение, которое будет при оптимальным. В этом случае проблема выбора оптимального решения теряет смысл. Выясним структуру координат угловой точки много­гранных решений. Пусть r<n. В этом случае система векторов содержит базис — максимальную линейно независимую подсистему векторов, через которую любой вектор системы может быть выражен как ее линей­ная комбинация. Базисов, вообще говоря, может быть несколько, но не более . Каждый из них состоит точно из r векторов. Переменные ЗЛП, соответствующие r век­торам базиса, называют, как известно, базисными и обо­значают БП. Остальные n – r переменных будут свобод­ными, их обозначают СП. Не ограничивая общности, будем считать, что базис составляют первые m векторов . Этому базису соответствуют базисные переменные , а свобод­ными будут переменные .

Если свободные переменные приравнять нулю, а базис­ные переменные при этом примут неотрицательные значе­ния, то полученное частное решение системы (8) назы­вают опорным решением (планом).

Теорема.Если система векторов содер­жит m линейно независимых векторов , то допустимый план (10) является крайней точкой многогранника планов.

Теорема. Если ЗЛП имеет решение, то целевая функция достигает экстремального значения хотя бы в одной из крайних точек многогранника решений. Если же целевая функция достигает экстремального значения бо­лее чем в одной крайней точке, то она достигает того же значения в любой точке, являющейся их выпуклой ли­нейной комбинацией.