рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Полимеры, полученные поликонденсацией. Фенолформальдегидные смолы. Эпоксидные смолы. Кремнийорганические смолы.

Полимеры, полученные поликонденсацией. Фенолформальдегидные смолы. Эпоксидные смолы. Кремнийорганические смолы. - раздел Энергетика, ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ Полимеры, Получаемые Поликонденсацией. В Зависимости От Особ...

Полимеры, получаемые поликонденсацией. В зависимости от особенностей проведения реакции поликонденсации могут быть получены полимеры как с линейной, так и с пространственной или сетчатой структурой молекул. В связи с тем, что при поликонденсации происходит выделение низкомолекулярных побочных продуктов, которые не всегда могут быть полностью удалены из полимера, диэлектрические параметры поликонденсационнных полимеров несколько ниже, чем у получаемых с помощью полимеризации. Однако поликонденсационные полимеры могут быть получены с рядом ценных свойств, обусловливающих их широкое применение для материалов, применяемых в электротехнических целях. Так, линейные поликонденсационные полимеры имеют высокую прочность и большое удлинение при разрыве. Многие из них способны вытягиваться в тонкие нити, из которых можно получать электроизоляционные ткани, пряжу. Некоторые полимеры применяются для изготовления пленочных матриалов. Поликонденсационные полимеры с линейной структурой макромолекул, которым присущи свойства термопластичных материалов в исходной стадии, являются в своей конечной стадии термореактивными и широко применяются как связующее в пластмассах в качестве лаковой основы и в производстве слоистых пластиков.

Фенолформальдегидные смолы –продукт поликонденсации фенола H5C6-OH с формальдегидом H2CO в закрытом котле водного раствора в присутствии катализатора. Фенолформальдегидные смолы могут быть изготовлены как термореактивными, так и термопластичными.

При избытке фенола в присутствии кислотного катализатора (соляной кислоты) получают термопластичные смолы или новолак. Применяется для изготовления пресс-порошков пластических масс.

При избытке формальдегида получают термореактивную смолу бакелит. При получении бакелита он проходит сначала стадию А (резол). При нагревании до 85°C бакелит переходит в промежуточную стадию В и называет ся резитол. При дальнейшем нагревании до 140-160 °C, бакелит полимеризуется и переходит в стадию С (резит). Бакелит имеет высокие электроизоляционные и механические свойства, но склонен к трекингу, то есть образованию на поверхности электропроводящих каналов под воздействием электрических разрядов. Применяется для пропитки дерева, для изготовления пластмасс, композиционных материалов, слоистых пластиков - гетинакса, текстолита. Удельное сопротивление бакелита rv=1011-1012 Ом·м, rs=1013 Ом. Плотность бакелита равна 1,25 Мг/м3.

При замене фенола анилином или крезолом получают анилиноформальдегидные смолы и крезолоформальдегидные смолы, которые имеют более высокие влажностные и тепловые свойства по сравнению с бакелитами. Они используются в качестве связующего для производства композиционных материалов, а также для производства лаков.

Полиэфирные смолы.Полиэфирные смолы получают поликонденсацией многоосновных кислот с многоатомными спиртами. Линейные полиэфирные смолы являются термопластичными полимерами, применяются в виде плёнок и волокон. Термореактивные используются в качестве основных лаков. Термореактивные полимеры на основе глифталевой кислоты называются глифталевыми смолами. Получают посредством поликонденсации глицерина и фталевого ангидрида. Обладают высокой эластичностью, высокой клейкостью, стойкостью к старению и трекингу.

Ненасыщенные полиэфирные смолы.Продукт поликонденсации гликолей с ненасыщенными кислотами, применяются в качестве изоляции электрических машин и аппаратов, для изготовления компаундов, а также в качестве связующего для изготовления слоистых пластиков. Обладают высокими электроизоляционными и тепловыми свойствами.

Эпоксидные смолы.Термопластичны, растворяются в ацетоне, отвердевают под воздействием теплоты с минимальной усадкой, при этом становятся термореактивными.

При синтезе этих смол в зависимости от химического состава соединений, получают диановые и циклоалифитические смолы, которые отличаются повышенной короностойкостью и трекингоустойчивостью. Их недостаток – токсичность. Применяются в качестве электроизоляции, изготовления клеев, лаков, заливочных компаундов.

Кремнийорганические смолы.Кремнийорганические смолы (полиорганосилоксаны, силиконы) Они обладают высокими тепловыми, влажностными свойствами, хорошие диэлектрики, применяются в качестве связующего для изготовления пластмасс, слюдяных материалов и слоистых пластиков. Однако, кремнийрганические смолы имеют низкую механическую прочность Кремнийорганические полимеры представляют собой неорганические цепи из атомов кремния и кислорода, обрамлённых органическими радикалами. Органические радикалы у атомов кремния снижают термическую стойкость полиорганосилоксанов, но придают им водостойкость и эластичность

.

 

ЛЕКЦИЯ №8

Диэлектрические материалы. Строение и свойства

Волокнистые материалы. Дерево, бумага, картон. Текстильные материалы. Натуральные, синтетические и искусственные волокна.

Пластмассы. Слоистые пластики. Гетинакс, текстолит, асбогетинакс, стеклотекстолит

 

В электротехнике весьма широко применяются волокнистые материалы, то есть материалы, которые состоят преимущественно (или целиком) из частиц удлиненной формы — волокон.

Преимущества многих волокнистых материалов: дешевизна, довольно большая механическая прочность и гибкость, удобство обработки. Недостатками их являются невысокие электрическая прочность и теплопроводность. Гигроскопичность их более высокая, чем у массивного материала того же химического состава (так как развитая поверхность волокон легко поглощает влагу, проникающую в промежутки между ними). Свойства волокнистых материалов могут быть существенно улучшены путем пропитки, вот почему эти материалы в электрической изоляции обычно применяют в пропитанном состоянии.

Большая часть волокнистых материалов — органические вещества. К ним принадлежат материалы растительного происхождения (дерево, хлопчатобумажное волокно, бумага и прочие материалы, состоящие в основном из целлюлозы) и животного происхождения (шелк, шерсть), искусственные волокна, получаемые путем химической переработки природного волокнистого (в основной целлюлозного) сырья и, наконец, приобретающие особо важное значение в последнее время синтетические волокна, изготовляемые из синтетических полимеров.

Волокнистые целлюлозные материалы имеют сравнительно большую гигроскопичность, что связано как с химической природой целлюлозы, содержащей большое число полярных гидроксильных групп, так и особенностями строения растительных волокон, а также невысокую нагревостойкость (в непропитанном состоянии — класс Y, а в пропитанном — А. Некоторые искусственные, и в особенности синтетические, волокнистые материалы имеют значительно меньшую гигроскопичность и повышенную нагревостойкость по сравнению с целлюлозными материалами.

В тех случаях, когда требуется особо высокая рабочая температура изоляции, которую волокнистые органические материалы обеспечить не могут, применяют волокнистые неорганические материалы — на основе стеклянного волокна и асбеста.

Дерево. Благодаря своей распространенности, дешевизне и легкости механической обработки дерево явилось одним из первых электроизоляционных и конструкционных материалов, получивших применение в электротехнике. Дерево обладает неплохими механическими свойствами, в особенности, если учесть его легкость: прочность дерева, отнесенная не к геометрическим размерам, а к массе, не ниже, чем у стали. Прочность дерева в различных направлениях различна: прочность поперек волокон меньше, чем вдоль.

Недостатки дерева: высокая гигроскопичность, обусловливающая резкое снижение электроизоляционных свойств дерева при его увлажнении, а также коробление и растрескивание деталей, изготовленных из влажного дерева, при его высушивании (вследствие того, что влажное дерево при сушке дает уменьшение размеров, неодинаковое в различных направлениях); нестандартность свойств дерева даже одной и той же породы, неоднородность свойств образцов дерева в зависимости от направления их выпиливания, наличие сучков и других дефектов; низкая нагревостойкость, а также горючесть.Свойства дерева улучшаются при его пропитке льняным маслом, различными смолами и т. д.

Бумага и картон.Бумага и картон — это листовой или рулонный материал коротковолокнистого строения, состоящий в основном из целлюлозы. Для производства бумаги обычно применяют древесную целлюлозу. В состав древесины помимо целлюлозы и воды входят различные вещества, которые рассматриваются как примеси: лигнин (при­дающий древесине хрупкость), смолы (особенно в древесине хвойных пород), соли и другие. Обычная писчая и печатная бумага, в том числе и бумага, на которой напечатано это пособие, изготавливаются из сульфитной целлюлозы, напучен­ной в результате варки древесины в растворе, содержащем сернистую кислоту H2SO3; такая целлюлоза в процессе ее изготовления легко приобретает белый цвет.

При изготовлении же бумаги, применяемой в качестве электрической изоляции применяется сульфатная и натронная целлюлоза, получаемая путем варки древесины в растворах, содержащих едкий натрий NaOH. Щелочная целлюлоза обычно не отбеливается и сохраняет желтоватый цвет, обусловленный не удаленными красящими веществами древесины. Щелочная целлюлоза дороже сульфитной. Однако, поскольку в процессе щелочной варки исходная целлюлоза древесины в меньшей мере подвергаемся деструкции (разрушению макромолекул) и сохраняет более высокую молекулярную массу и длину волокон, чем в процессе кислотной варки, щелочные бумаги имеют более высокую механическую прочность и более стойки к тепловому старению. Кабельная бумага выпускается различных марок, обозначаемых буквами. К, КМ, KB, КВУ, КВМ и КВМУ (эти буквы обозначают: К — кабельная, М — многослойная, В — высоковольтная, У — уплотненная) и цифрами от 15 до 240 (обозначающими номинальную толщину бумаги — от 15 до 240 мкм).

Телефонная бумага марок КТ и КТУ согласно имеет толщину 50 мкм.

Конденсаторная бумага — весьма важный и ответственный материал: в пропи­танном виде она используется как диэлектрик бумажных конденсаторов. Выпу­скается двух видов: КОН — обычная конденсаторная бумага и силкон — бумага для силовых конденсаторов.

Микалентная бумага, применяемая в качестве подложки микаленты, — одна из немногих разновидностей электроизоляционных бумаг, производимых не из древесной целлюлозы щелочной варки, а из длинноволокнистого хлопка. Она имеет толщину 20 ± 2 мкм и массу 1 м2, равную 17 г; выпускается в рулонах шириной 450 или 900 мм.

Картон в основном отличается от бумаги большей толщиной. Электроизоля­ционные картоны изготовляются двух типов: воздушные более твердые и упругие, предназначенные для работы на воздухе (прокладки для пазов электрических ма­шин, каркасы катушек, шайбы), и масляные — более рыхлой структуры и более мягкие, предназначаемые в основном для работы в трансформаторном масле. Масляные картоны хорошо пропитываются маслом и в пропитанном виде имеют высокую электриче­скую прочность. Электроизоляционные картоны изготовляются из древесной или хлопковой целлюлозы.

Особая бумага и картон. Так, бумаги из смеси целлюлозы с полиэтиленовым волокном имеют er, tg d и гигроскопичность меньшие, а механи­ческую прочность большую, чем чисто целлюлозные бумаги. Такие бумаги, в ча­стности, находят применение в изоляции кабелей весьма высокого напряжения.

Фибра.Фибра изготавливается из тонкой бумаги, которая пропускается через теплый раствор хлористого цинка, а затем наматывается на стальной барабан, причем слои прилипают друг к другу, образуя нужную толщину. После чего бумага тщательно промывается водой и прессуется Фибра имеет невысокие электроизоляционные свойства и значительную гигроскопичность, однако она отличается высокой механической прочностью, хорошо обрабатывается. При воздействии на фибру электрической дуги она разлагается, выделяя газ, способствующий гашению дуги, поэтому фибру используют для изготовления стреляющих разрядников. В настоящее время фибра заменяется некоторыми синтетическими смолами.

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ

государственное образовательное учреждение... высшего профессионального образования... САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Полимеры, полученные поликонденсацией. Фенолформальдегидные смолы. Эпоксидные смолы. Кремнийорганические смолы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ.
  Конспект лекций направление 140200 бакалавриат     Самара 2011 ЛЕКЦИЯ №1 Диэл

Основные виды поляризации в некоторых газообразных, жидких и твердых диэлектриках
Материал диэлектрическая проницаемость полярность виды поляризации Воздух 1.00058

Диэлектрическая проницаемость диэлектриков
Любой диэлектрик, с нанесёнными на него электродами, можно рассматривать, как конденсатор определённой ёмкости (U–приложенное напряжение, Р–полимеризация, Е–внешняя напряжённость).  

Токи в диэлектриках
В момент включения и выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает обусловленный быстрым

Виды диэлектрических потерь
Существует четыре основных вида диэлектрических потерь. Потери, обусловленные поляризацией. Наблюдаются в веществах с релаксационной поляризацией (диэлектрики с дипольной

Пробой газообразных диэлектриков
Газообразные диэлектрики обладают высокими электроизоляционными свойствами только при низких напряжениях. При высоком напряжении начинается

Пробой жидкого диэлектрика
Пробивное напряжение жидкости или электрическая прочность зависит от чистоты жидкости, наличия посторонних примесей и газовых включений. В ж

Пробой твёрдых диэлектриков
Пробой твёрдого однородного диэлектрика.    

Механические свойства
При эксплуатации электротехнического оборудования электроизоляционные материалы и диэлектрики подвергаются воздействию различных факторов, вредно сказывающихся на свойствах изоляции. Твердые диэлек

Тепловые свойства диэлектриков
Температура - это понятие, введенное для характеристики энергии, которой обладают молекулы вещества. С другой стороны, это физическая характеристика, которая соответствует равновес

Влажностные свойства диэлектриков
Все изолирующие материалы поглощают влагу. Наличие пор, сообщающихся с атмосферой, приводит к снижению влагостойкости материала, плотная его структура затрудняет проникновение воды и повышает влаго

Радиационные свойства
Способность материала сохранять свои эксплуатационные характеристики под действием ионизирующих излучений называется радиационной стойкостью.Ионизирующие излучения вызывают в диэле

Трансформаторное масло
Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогася

Гетероцепные термопластичные смолы.
Полиамиды. Продукты поликонденсации, образованные повторяющимися группами – СН2 – и пептидными группами – СО – NН – . Имеют высокую механическую прочность

Полярные термопласты
Полярные термопласты имеют повышенные значения диэлектрической проницаемости и высокие диэлектрические потери, которые существенно зависят от температуры и частоты напряжения. Знач

Текстильные материалы
Текстильные материалы получают методом специальной обработки длинноволокнистого сырья. Ткани отличаются от бумаг упорядоченным строением (переплетением) нитей. Текстильные материалы имеют бо

Кристаллизация металлов
Процесс образования в металлах кристаллической решетки называется кристаллизацией. Для изучения процесса кристаллизации строят кривые охлажд

Точеные дефекты
  Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)

Простейшие виды дислокаций – краевые и винтовые.
  Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
  Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любы

Кристаллизация сплавов.
Кристаллизация сплавов подчиняется тем же закономерностям, что и кристаллизация чистых металлов. Необходимым условием является стремление системы в состояние с минимумом свободной энергии.

Диаграмма состояния.
Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры (рис. 4.5) .

Структуры железоуглеродистых сплавов
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых бо

Компоненты и фазы железоуглеродистых сплавов
  Компонентами железоуглеродистых сплавов являются железо, углерод и цементит. 1. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавл

Процессы при структурообразовании железоуглеродистых сплавов
Линия АВСD – ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллиза

Структуры железоуглеродистых сплавов
Все сплавы системы железо – цементит по структурному признаку делят на две большие группы: стали и чугуны. Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их

Титан и его сплавы
  Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Деформируемые сплавы, упрочняемые термической обработкой.
К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводитс

Латуни.
Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка о

Дефекты обработки металлов
Коррозия– окисление металла при взаимодействии поверхности стальных деталей с печными газами. Обезуглероживание– выгорание углерода с поверхности детали,

Сверхпроводники
При температурах, близких к абсолютному нулю, изменяется характер взаимодействия электронов между собой в кристаллической решётке, при этом становится возможным притяжение между одноимённо заряженн

Контактные материалы
Электрическим контактом называют поверхность соприкосновения токоведущих частей электротехнических устройств, а также конструктивные приспособления, обеспечивающие такой контакт. П

Тугоплавкие металлы
Вольфрам— чрезвычайно тяжелый твердый металл серого цвета. Из всех металлов он обладает наиболее высокой температурой плавления. Вольфрам получают из руд различного состава. При ме

Благородные металлы
Золото- жёлтый металл высокой пластичности, весьма устойчивый к коррозии. Значение sр = 150 МПа, а Dl/l =40%. Используется для покрытия контактов в электро

Электрические свойства материалов
Класс материалов r, Ом·м Знак ar Тип электропроводности Проводники 10

Низкочастотные магнитомягкие материалы
Магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. Выполнение этого требова

Магнитные материалы различного назначения.
Магнитотвёрдые материалы. Металлокерамические и металлопластические магниты. Магнитотвердые ферриты. Сплавы на основе редкоземельных материалов.   К магнитотвер

Высокочастотные магнитомягкие материалы
Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения

Магнитные материалы специализированного.
Магнитные пленки. Термомагнитные материалы. Ферриты для СВЧ. Магнитострикционные материалы.   Сплавы, отличающиеся незначительным изменением магнитной проницаемости п

I. КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ.
  Разрабатываются теоретические основы создания новых типов сталей, сочетающих высокую прочность со специальными физико-химическими свойствами. Создаются экономичные, с высокими техно

VI. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ.
  Разрабатываются теоретические основы создания новых композиционных материалов (КМ), в следующих направлениях: - совместимость компонентов КМ: термодинамика и химия контактн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги