рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дефекты обработки металлов

Дефекты обработки металлов - раздел Энергетика, ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ Коррозия– Окисление Металла При Взаимодействии Поверхности С...

Коррозия– окисление металла при взаимодействии поверхности стальных деталей с печными газами.

Обезуглероживание– выгорание углерода с поверхности детали, происходит при окислении стали. Приводит к резкому снижению прочности, может вызвать образование закалочных трещин и коробление. Для предохранения деталей от окисления и обезуглероживания при отжиге, нормализации и закалке в рабочее пространство вводят защитные газы.

Перегрев – образование крупнозернистой структуры стали при нагреве выше определенных температур и длительной выдержке. Перегрев ведет к понижению пластичности, образованию трещин при закалке. Исправляется повторным отжигом или нормализацией.

Пережогможет возникнуть в результате нагрева при еще более высоких температурах и длительной выдержке металла при высокой температуре в окислительной атмосфере печи. Пережог сопровождается окислением и частичным оплавлением границ зерен. Металл становится хрупким. Пережог является неисправимым браком.

В процессе закалки могут возникнуть следующие дефекты:

Закалочные трещины - образуются вследствие высоких внутренних напряжений и являются неисправимым браком. Трещины возникают при неправильном нагреве (перегреве) и большой скорости охлаждения деталей, а также если в изделии имеются резкие переходы от тонких сечений к толстым, выступы, заостренные углы.

Деформация изменение формы и размеров изделия, происходит в результате внутренних напряжений, вызванных неравномерным охлаждением и фазовыми превращениями.

Коробление несимметричная деформация изделий. Коробление может происходить вследствие причин, вызывающих деформацию, а также при неправильном положении детали при погружении её в закалочную среду;

Мягкие пятна участки поверхности инструмента с пониженной твёрдостью. Образуется в местах, где имелись окалина, загрязнения, участки с обезуглероженной поверхностью, а также при недостаточно быстром движении деталей в закалочной среде;

Низкая твёрдость инструмента является следствием недогрева, недостаточной выдержки или недостаточно быстрого охлаждения в закалочной среде. Для исправления такого дефекта деталь подвергают высокому отпуску и повторной закалке;

Перегрев и недогрев под закалку приводят к снижению механических свойств. Исправляют эти дефекты отжигом, после которого снова проводят закалку;

Окисление и обезуглероживание поверхности изделия предупреждается строгим соблюдением режима термической обработки и нагревом в среде нейтральных газов (азот, аргон).

 

 

ЛЕКЦИЯ №13

Проводники.

Классификация проводниковых материалов. Жидкие проводники. Твердые проводники Основные свойства проводников. Проводники в электрическом поле. Зависимость удельного электрического сопротивления металлических проводников от их строения и внешних факторов.

Проводниковые изделияМатериалы высокой проводимости. Свойства и применение. материалов высокой проводимости. Медь и ее сплавы. Алюминий и его сплавы. Биметаллические проводники

 

 

Проводниками называются вещества, внутри которых в случае электростатического равновесия электрическое поле отсутствует. Некомпенсированные заряды проводников локализуются в бесконечном, тонком поверхностном слое. Если электрическое поле отлично от нуля, в проводнике возникает электрический ток. Проводниками электрического тока могут быть твёрдые тела, жидкости, а при особых условиях и газы. Из твёрдых проводников широко применяются металлы и их сплавы.

По удельному сопротивлению материалы делятся на группы:

- металлы и сплавы высокой проводимости при нормальной температуре ≤0,05 мкОм·м;

- металлы и сплавы высокого сопротивления при нормальной температуре ≥0,3 мкОм·м.

Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин. Металлы и сплавы высокого сопротивления применяются для изготовления резисторов, электрических нагревательных приборов, нитей ламп накаливания.

Особую группу составляют криопроводникии сверхпроводники. Это металлы, обладающие чрезвычайно малым удельным сопротивлением при низких криогенных температурах.

Классификация по агрегатному состоянию. К жидким проводникам относят расплавленные металлы и электролиты. Механизм прохождения тока в металлах как в твёрдом, так и в жидком состояние обусловлен движением свободных электронов под воздействием электрического поля. Поэтому металлы называются проводниками с электронной проводимостью или проводниками первого рода. Проводниками второго рода или электролитами называются растворы кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов, вследствие чего состав электролита постепенно меняется (закон Фарадея).

Все газы и пары при низких напряжениях не являются проводниками, при достаточной напряжённости поля Е, при которой начинается ионизация газа, газ становится проводником с электронной и ионной проводимостью. Сильно ионизированный газ превращается в плазму.

Электрические и механические свойства проводников.

1. Удельная проводимость () или удельное сопротивление ().

2. Температурный коэффициент удельного сопротивления TK

3. Коэффициент теплопроводности.

4. Контактная разность потенциалов.

5. Работа выхода электронов из металлов

6. Предел прочности на растяжение.

7. Относительное удлинение перед разрывом.

8. Хрупкость.

9. Твёрдость.

10. Изгиб.

Удельная проводимость, связь с плотностью тока. Основные соотношения: ток в проводнике I [A] связан с напряженностью поля E [В/м] выражением I=·E, где [См/м] – удельная проводимость.

[Ом·м]

- для проводникового сопротивления R, длиной l и сечением S.

Удельная проводимость ,

где e - заряд электрона, n0 - число свободных электронов,  - длина среднего пробега между двумя узлами кристаллической решётки, m - масса электронов, vT - средняя скорость теплового движения электронов. Для различных металлов vT и n0 различны, поэтому удельная проводимость зависит от , которая определяется структурой металла. Чистые металлы с правильной кристаллической решёткой характеризуются наименьшими значениями. Микродефекты кристаллической решётки уменьшают подвижность электронов.

Температурный коэффициент удельного сопротивления. С ростом температуры вследствие изменения колебаний узлов кристаллической решётки увеличивается число препятствий на пути движения свободных электронов, то есть уменьшается . Следовательно, увеличивается удельное сопротивление, так как уменьшается проводимость. Температурный коэффициент при этом будет положительным, так как .

При переходе из твёрдого состояния в жидкое у большинства металлов наблюдается увеличение удельного сопротивления – это справедливо только для тех металлов, у которых при плавление увеличивается объём, то есть уменьшается плотность, у металлов уменьшающих объём, удельное сопротивление уменьшается.

Удельное сопротивление сплавов. Примеси и нарушение структуры металла увеличивают удельное сопротивление. Значительное увеличение удельного сопротивления наблюдается у твёрдых растворов при совместной кристаллизации.

Теплопроводность металлов. За передачу теплоты через металл в основном ответственны те же свободные электроны, которые определяют электропроводность. Поэтому коэффициент теплопроводности T у металлов выше чем у диэлектриков. Чем выше удельная проводимость, тем больше коэффициент теплопроводности. При повышении температуры отношение T/ растёт. Математически это выражается законом Видемана-Франца-Лоренца:

,

где L0 – число Лоренца, T – термодинамическая температура.

.

Значение постоянной Больцмана k=1,38·10-23 Дж/К, заряда электрона e=1,6·10-19 Кл.

Термоэлектродвижущая сила. При соприкосновении двух разных проводников (или полупроводников) между ними возникает контактная разность потенциалов (термопара). Причина - различные значения работы выхода электронов из различных металлов.

,

где n0 - концентрация электронов, UA,UB - потенциалы соприкасающихся металлов, k – постоянная Больцмана.

Если температуры спаев одинаковы, то сумма разности потенциалов в замкнутой цепи = 0. Если один из спаев имеет температуру Т1, а другой Т2, то

;

или , где - постоянный для данной пары проводников коэффициент термо-ЭДС. Таким образом термо-ЭДС пропорциональна разности температур спаев.

Температурный коэффициент линейного расширения. Температурный коэффициент линейного расширения проводников вычисляется так же, как и для диэлектриков. .

Также как и для диэлектриков, используется при рассмотрении работы разнородных сопряжённых материалов в конструкциях аппаратов, изоляторов, для предотвращения растрескивания.

Коэффициент l необходим также для расчёта температурного коэффициента электрического сопротивления провода. Для чистых металлов , однако для сплавов с малым значением  формула имеет практическое значение.

 

К материалам высокой проводимостипринято относить материалы с удельным сопротивлением r< 0.05 мкОм*м/

Серебро - один из наиболее дефицитных матералов, достаточно широко применяемый в электротехнике и электронике для высокочастотных кабелей, защиты медных проводников от окисления, для электродов некоторых типов керамических и слюдяных конденсаторов в электрических контактах, где оно используется в сплавах с медью, никелем или кадмием, в припоях ПСр-10, ПСр-25 и др. Серебро марки Ср999-999.9 должно иметь примесей не более 0.1%. Удельное электрическое сопротивление =0.015 мкОм * м. Механические характеристики серебра невысоки: твердость по Бринелю - 25 (немного более золота), предел прочности при разрыве не более 200МПа, относительное удлиннение при разрыве ~50%. По сравнению с золотом и платиной имеет пониженную химическую стойкость. Часто применение серебра ограничивается его способностью диффундировать в материалы подложки.

Медь - наиболее широко применяется в качестве проводникового материала: в производстве обмоточных и монтажных проводов и кабелей (мягкая отожженная медь марки ММ) в производстве волноводов и т.д.; при изготовлении контактных проводов, шин распределительных устройств, коллекторных пластин электрических машин (медь твердая марки МТ - имеет меньшую проводимость и относительное удлинение перед разрывом, но большую механическую прочность, чем отожженная медь марки ММ).

Наиболее нежелательными примесями в меди являются висмут и свинец, сера, кислород. Наиболее чистые сорта проводниковой меди марок МООК (катодная) и МООБ (бескислородная), содержат примесей не более 0.001%. В производстве проводниковых изделий применяют марки меди с содержанием примесей не более 0.05 - 0.1%, для проводов очень малого диаметра (0.01 мм) и проводов, работающих при температурах выше 300оС применяют проволоку из бескислородной меди.

Бронзы- сплавы меди с оловом (оловянные), алюминием (алюминиевые), бериллием (бериллиевые) и др. легирующими элементами. По электропроводности уступают меди, но превосходят ее по механической прочности, упругости, сопротивлению истиранию и коррозионной стойкости. Применяются для изготовления пружинящих контактов электрических приборов, контактов токоведущих пружин, проводов линий электрического транспорта, пластин коллекторов электрических машин.

Бронзовые детали для упрочнения подвергаются термической обработке - закалке и отпуску при повышенных температурах. Предел прочности на растяжение бронз может быть 800 - 1200 МПа и более, в то время как проводимость твердых бронз может составлять 10 - 30% от проводимости чистой меди.

Алюминий - в 3.3 раза легче меди, имеет сравнительно большую проводимость (для АМ =0.028 мкОм . м) и стойкость к атмосферной коррозии за счет защитной пленки оксида Al2O3 . Алюминий мягкий имеет прочность на разрыв 80, твердый 160 - 170 МПа. По сравнению с медью имеет больший температурный коэффициент линейного расширения ( 26 . 10-6 1/оС ), что является недостатком. В местах контакта алюминиевого провода с проводами из других металлов во влажной среде возникает гальваническая пара, поэтому незащищенная лаками или другими способами алюминиевая проволока разрушается коррозией. Из алюминия особой чистоты с содержанием примесей не более 0.005% изготовляют электроды алюминиевых конденсаторов и алюминиевую фольгу. Из алюминия, содержащего примесей не более 0.3 - 0.5% (марки А7Е и А5Е), изготовляют проволоку и шины. Для жил кабелей может использоваться алюминий с уменьшенным содержанием примесей - марки А75К, А8К, А8КУ. Алюминиевые провода можно соединять друг с другом холодной или горячей сваркой, а также пайкой с применением специальных флюсов и припоев.

Из алюминиевых сплавов наиболее широко используется альдрей, высокие механические свойства которого достигаются за счет наличия в его составе соединения Mg2Si (сплав содержит 98% чистого алюминия). Его бр=350 МПа, =0.0317 мкОм . м.

В линиях электропередачи широко применяют сталеалюминиевый провод - стальные жилы, обвитые алюминиевой проволокой. Для сталеалюминиевого провода воздушных линий используется особо прочная стальная проволока с бр=1200 - 1500 МПа, покрытая цинком для защиты от коррозии в условиях повышенной влажности.

Сталь (железо с содержанием углерода 0.1 - 0.15%) как проводниковый материал используется в виде шин, рельсов трамваев, электрических железных дорог и пр. Удельная проводимость стали в 6 - 7 раз меньше, чем у меди, бр= 700 - 750 МПа, относительное удлинение перед разрывом 5 - 8%. На переменном токе в стали проявляется поверхностный эффект и появляются потери мощности на гистерезис. Такая сталь может использоваться для проводов воздушных линий электропередач, если передаются небольшие мощности и основную роль играет не удельное сопротивление провода, а его механическая прочность.

Биметаллический проводпредставляет собой стальную проволоку круглого, овального или прямоугольного сечения, снаружи покрытую слоем меди или алюминия. При этом оба металла соединены друг с другом прочно и непрерывно по всей поверхности соприкосновения. Каждая часть провода выполняет свою функцию. Медная или алюминиевая оболочка осуществляет электропроводность, стальная сердцевина обеспечивает повышенную прочность на растяжение, что позволяет увеличить расстояние между опорами.

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ

государственное образовательное учреждение... высшего профессионального образования... САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дефекты обработки металлов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ.
  Конспект лекций направление 140200 бакалавриат     Самара 2011 ЛЕКЦИЯ №1 Диэл

Основные виды поляризации в некоторых газообразных, жидких и твердых диэлектриках
Материал диэлектрическая проницаемость полярность виды поляризации Воздух 1.00058

Диэлектрическая проницаемость диэлектриков
Любой диэлектрик, с нанесёнными на него электродами, можно рассматривать, как конденсатор определённой ёмкости (U–приложенное напряжение, Р–полимеризация, Е–внешняя напряжённость).  

Токи в диэлектриках
В момент включения и выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает обусловленный быстрым

Виды диэлектрических потерь
Существует четыре основных вида диэлектрических потерь. Потери, обусловленные поляризацией. Наблюдаются в веществах с релаксационной поляризацией (диэлектрики с дипольной

Пробой газообразных диэлектриков
Газообразные диэлектрики обладают высокими электроизоляционными свойствами только при низких напряжениях. При высоком напряжении начинается

Пробой жидкого диэлектрика
Пробивное напряжение жидкости или электрическая прочность зависит от чистоты жидкости, наличия посторонних примесей и газовых включений. В ж

Пробой твёрдых диэлектриков
Пробой твёрдого однородного диэлектрика.    

Механические свойства
При эксплуатации электротехнического оборудования электроизоляционные материалы и диэлектрики подвергаются воздействию различных факторов, вредно сказывающихся на свойствах изоляции. Твердые диэлек

Тепловые свойства диэлектриков
Температура - это понятие, введенное для характеристики энергии, которой обладают молекулы вещества. С другой стороны, это физическая характеристика, которая соответствует равновес

Влажностные свойства диэлектриков
Все изолирующие материалы поглощают влагу. Наличие пор, сообщающихся с атмосферой, приводит к снижению влагостойкости материала, плотная его структура затрудняет проникновение воды и повышает влаго

Радиационные свойства
Способность материала сохранять свои эксплуатационные характеристики под действием ионизирующих излучений называется радиационной стойкостью.Ионизирующие излучения вызывают в диэле

Трансформаторное масло
Трансформаторные масла применяют для заливки силовых и измерительных трансформаторов, реакторного оборудования, а также масляных выключателей. В последних аппаратах масла выполняют функции дугогася

Гетероцепные термопластичные смолы.
Полиамиды. Продукты поликонденсации, образованные повторяющимися группами – СН2 – и пептидными группами – СО – NН – . Имеют высокую механическую прочность

Полярные термопласты
Полярные термопласты имеют повышенные значения диэлектрической проницаемости и высокие диэлектрические потери, которые существенно зависят от температуры и частоты напряжения. Знач

Полимеры, полученные поликонденсацией. Фенолформальдегидные смолы. Эпоксидные смолы. Кремнийорганические смолы.
Полимеры, получаемые поликонденсацией. В зависимости от особенностей проведения реакции поликонденсации могут быть получены полимеры как с линейной, так и с пространственной или се

Текстильные материалы
Текстильные материалы получают методом специальной обработки длинноволокнистого сырья. Ткани отличаются от бумаг упорядоченным строением (переплетением) нитей. Текстильные материалы имеют бо

Кристаллизация металлов
Процесс образования в металлах кристаллической решетки называется кристаллизацией. Для изучения процесса кристаллизации строят кривые охлажд

Точеные дефекты
  Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей. (рис. 2.1.)

Простейшие виды дислокаций – краевые и винтовые.
  Краевая дислокация представляет собой линию, вдоль которой обрывается внутри кристалла край “лишней“ полуплоскости (рис. 2.2)

Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
  Строение металлического сплава зависит от того, в какие взаимодействия вступают компоненты, составляющие сплав. Почти все металлы в жидком состоянии растворяются друг в друге в любы

Кристаллизация сплавов.
Кристаллизация сплавов подчиняется тем же закономерностям, что и кристаллизация чистых металлов. Необходимым условием является стремление системы в состояние с минимумом свободной энергии.

Диаграмма состояния.
Диаграмма состояния представляет собой графическое изображение состояния любого сплава изучаемой системы в зависимости от концентрации и температуры (рис. 4.5) .

Структуры железоуглеродистых сплавов
Железоуглеродистые сплавы – стали и чугуны – важнейшие металлические сплавы современной техники. Производство чугуна и стали по объему превосходит производство всех других металлов вместе взятых бо

Компоненты и фазы железоуглеродистых сплавов
  Компонентами железоуглеродистых сплавов являются железо, углерод и цементит. 1. Железо – переходный металл серебристо-светлого цвета. Имеет высокую температуру плавл

Процессы при структурообразовании железоуглеродистых сплавов
Линия АВСD – ликвидус системы. На участке АВ начинается кристаллизация феррита (), на участке ВС начинается кристаллиза

Структуры железоуглеродистых сплавов
Все сплавы системы железо – цементит по структурному признаку делят на две большие группы: стали и чугуны. Особую группу составляют сплавы с содержанием углерода менее 0,02% (точка Р), их

Титан и его сплавы
  Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС.

Деформируемые сплавы, упрочняемые термической обработкой.
К таким сплавам относятся дюралюмины ( сложные сплавы систем алюминий – медь –магний или алюминий – медь – магний – цинк). Они имеют пониженную коррозионную стойкость, для повышения которой вводитс

Латуни.
Латуни могут иметь в своем составе до 45 % цинка. Повышение содержания цинка до 45 % приводит к увеличению предела прочности до 450 МПа. Максимальная пластичность имеет место при содержании цинка о

Сверхпроводники
При температурах, близких к абсолютному нулю, изменяется характер взаимодействия электронов между собой в кристаллической решётке, при этом становится возможным притяжение между одноимённо заряженн

Контактные материалы
Электрическим контактом называют поверхность соприкосновения токоведущих частей электротехнических устройств, а также конструктивные приспособления, обеспечивающие такой контакт. П

Тугоплавкие металлы
Вольфрам— чрезвычайно тяжелый твердый металл серого цвета. Из всех металлов он обладает наиболее высокой температурой плавления. Вольфрам получают из руд различного состава. При ме

Благородные металлы
Золото- жёлтый металл высокой пластичности, весьма устойчивый к коррозии. Значение sр = 150 МПа, а Dl/l =40%. Используется для покрытия контактов в электро

Электрические свойства материалов
Класс материалов r, Ом·м Знак ar Тип электропроводности Проводники 10

Низкочастотные магнитомягкие материалы
Магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. Выполнение этого требова

Магнитные материалы различного назначения.
Магнитотвёрдые материалы. Металлокерамические и металлопластические магниты. Магнитотвердые ферриты. Сплавы на основе редкоземельных материалов.   К магнитотвер

Высокочастотные магнитомягкие материалы
Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения

Магнитные материалы специализированного.
Магнитные пленки. Термомагнитные материалы. Ферриты для СВЧ. Магнитострикционные материалы.   Сплавы, отличающиеся незначительным изменением магнитной проницаемости п

I. КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ.
  Разрабатываются теоретические основы создания новых типов сталей, сочетающих высокую прочность со специальными физико-химическими свойствами. Создаются экономичные, с высокими техно

VI. КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ.
  Разрабатываются теоретические основы создания новых композиционных материалов (КМ), в следующих направлениях: - совместимость компонентов КМ: термодинамика и химия контактн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги