рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Резисторы

Резисторы - раздел Электроника, СПРАВОЧНИК МОЛОДОГО РАДИСТА   Общие Сведения Резисторы, Составляющие До 35 % Общего Ко­личе...

 

Общие сведения Резисторы, составляющие до 35 % общего ко­личества элементов в схемах современной радиоэлектронной аппа­ратуры РЭА, разнообразны по конструктивным и электрическим характеристикам. Различают резисторы постоянного и переменного сопротивления, проволочные и непроволочные. Непроволочные рези­сторы наиболее распространены в РЭА, поскольку обладают мень­шими размерами, незначительной индуктивностью, относительной стабильностью активного сопротивления в широком диапазоне час­тот, просты в производстве.

Параметры. Основными параметрами резисторов являются сле­дующие. Номинальная мощность рассеивания Яном, которую резис­тор может рассеивать при непрерывной нагрузке, нормальном дав­лении и температуре. В РЭА чаще всего используют непроволочные резисторы на номинальные мощности 0,125; 0,25; 0,5; 1 и 2 Вт. Вы­бор резистора по мощности (Вт) производится по формуле Р=U2/R, где V — напряжение на резисторе, В; R — сопротивление резистора, Ом. С учетом возможного повышения температуры ре­зисторы выбирают с номинальной мощностью на 20 — 30 % больше расчетной. Численное значение мощности обычно входит в обозна­чение резистора, например МЛТ-2, где Рном=2 Вт. Обычно на кор­пусах непроволочных резисторов приводится мощность при РНом>2 Вт, а на корпусах резисторов меньшей мощности — в таблицах.

Максимальное напряжение Uмакс — наибольшее напряжение (постоянное или действующее переменное), которое можно прило­жить к токоотводам резистора с сопротивлением Кном>U2максном.

Температурный коэффициент сопротивления ТКС характеризует относительное изменение сопротивления при изменении температуры на 1 °С. Если сопротивление резистора с увеличением температуры возрастает, а с понижением уменьшается, то ТКС положительный, если же с повышением (уменьшением) температуры сопротивление снижается (увеличивается) — ТКС отрицательный. Температурный коэффициент сопротивления непроволочных постоянных резисторов 0,03-0,1 %/°С, а резисторов повышенной точности — на порядок меньше.

Шумы резистора оценивают по величине их переменной эдс, возникающей да его зажимах и отнесенной к 1 В приложенного к резистору напряжения постоянного тока. Измеряют эдс шумов в полосе частотой- 50 Гц — 5 кГц при рассеиваниии резистором но­минальной мощности.

Номинальное сопротивление резистора Rн обычно обозначено на его корпусе. Действительное сопротивление резистора может от­личаться от номинального, но не более допустимого значения.

Номинальные сопротивления резисторов, выпускаемых отечест­венной промышленностью и зарубежными фирмами, стандартизова­ны. В СССР установлено шесть рядов (Е6, Е12, Е24, Е48, Е96, Е192), а по СТ СЭВ 1076 — 78 кроме этих рядов допускается исполь­зовать ЕЗ. Ряды Е представляют собой десятичные ряды геометрической прогрессии с ее знаменателем qm — V 10 Для ряда Ет. Циф­ра После буквы Е указывает число номинальных величин в каждом десятичном интервале. Например, ряд Еб содержит шесть значений номинальных сопротивлений в каждой декаде, которые должны со­ответствовать числам 1; 1,5; 2,2; 3,3; 4,7; 6,8 или числам, полученным путем умножения либо деления этих чисел на 10я, где n — целое положительное или отрицательное число.

Номинальное сопротивление повышенной точности резисторов (Cl-8, C2-8 и др.) можно определить по формуле Rном = m/ 10n, где m = 48; 96; 192 (номер ряда); n — целое положительное число от 1 до т. Значения, вычисленные по формуле, деляг или умножают на 10, 100, 1000 и т.д., округляя результат до третьей значащей цифры (если их получилось более трех), и продлевают таким об­разом ряды в сторону как больших, так и меньших значений. Ряды номинальных сопротивлений резисторов широкого применения при­ведены в табл. 41.

 

Таблица 41 Ряды номинальных сопротивлений, Ом, кОм, мОм,

Е6 Е12 Е24 Е6 Е12 Е24 E6 Е12 Е24
1,0 1,0 1,0
    1,1        
    1,2    
1,5 1.2 1,3    
    1,5    
    1,6      
  1,8 1,8      
    2,0    
2,2 2,2 2,2    
    2,4      
  2,7 2,7      
    3,0    
3,3 3,3 3,3    
    3,6      
  3,9 3,9      
    4,3    
4,7 4,7 4,7    
    5,1      
  5,6 5,6      
    6,2    
6,8 6,8 6,8    
    7,5      
  8,2 8,2      
    9,1          
Допускаемые отклонения от номинального сопротивления, %
±20 ±10 ±5 ±20 ±10 - ±20 ±10 ±5

 

Кодированные обозначения резисторов. Кодированные обозначе­ния сопротивлений и допустимых отклонений введены для малога­баритных резисторов Сокращенное обозначение состоит из цифры, указывающей номинальное сопротивление резистора, и двух букв, одна из которых означает единицу измерения сопротивления, а дру­гая — его допустимое отклонение от номинального.

Единицу Ом обозначают буквой Е, килоом — К, мегаом — М, гигаом — Г, тераом — Т, при этом сопротивления от 100 до 910 Ом выражают в сотых долях килоома, а от 100 до 910 кОм — в сотых долях мегаома.

Если номинальное сопротивление выражается целым числом, обозначение единицы измерения ставят после него (например, 68Е — 68 Ом; 68 К — 68 кОм; 68 М — 68 МОм), если целым числом с десятичной дробью, то вместо запятой после целого числа ставят обозначение единицы измерения, а дробь — после буквы (например, ЗКЗ — 3,3 кОм, 4М7 — 4,7 МОм), если десятичной дробью, меньшей единицы, то вместо нуля целых и запятой впереди цифры ставят буквенное обозначение единицы измерения (например, К47— 0,47 кОм, М47 — 0,47 МОм).

Допустимые отклонения сопротивления (% от номинального) Обозначают буквами Ж — ±0,1; У — ±0,2; Д — ±0,5; Р — ±1; Л — ±2; И — ±5; С — ±1-0; В — ±20 Кодированное обозначение резистора, например сопротивлением 560 Ом и допустимым откло­нением ±0,5 %., записывается К56Д.

Обозначение резисторов на схемах. Резисторы сопротивлением от 1 до 1000 Ом обозначают на схемах в омах целыми числами без указания единицы измерения (например, R470 означает, что резис­тор R имеет сопротивление 470 Ом) Сопротивление, составляющее долю или число с долями ом, Обозначают в омах с указанием еди­ницы измерения (например, 0,47 Ом или 4,7 Ом).

Резисторы сопротивлением от 1 до 910 кОм обозначают числом килоом с прибавлением буквы К. (например, R910К), сопротивле­нием от i МОм и выше — в мегаомях без указания единицы изме­рения, причем если сопротивление равно целому числу, то после его численного значения ставят запятую и нуль (например, сопротив­ление 2 МОм означают 2,0).

Постоянные непроволочные резисторы. В зависимости от мате­риалов проводящих элементов непроволочные резисторы постоянно­го сопротивления делят на группы, углеродистые, металлопленочные и металлооксидные, а также композиционные

В углеродистых резисторах С1 проводящий элемент выполнен в виде пленки углерода, наклеенной на изоляционное (обычно керамическое) основание Эти резисторы обладают хорошей стабильностью сопротивления, малой его зависимостью от напряже­ния и частоты, низким уровнем собственных шумов и устойчивостью к кратковременным (импульсным) перегрузкам, имеют небольшой отрицательный температурный коэффициент.

Поскольку для получения высокоомных резисторов наносят очень тонкий проводящий слой, при котором снижается стабильность сопротивления, их предельные номинальные сопротивления ограничи­вают: 1 МОм для резисторов мощностью 0,125 Вт; 5,1 МОм для ре­зисторов 0,25 Вт и 10 МОм для резисторов от 0,5 до 10 Вт.

В металлопленочных и металлооксидных рези, сторах С2 проводящий элемент выполняют в виде пленки сплава или его оксида, нанесенного на изоляционное (керамическое, пластико­вое) основание. По сравнению с углеродистыми металлопленочные резисторы имеют в 2 — 3 раза меньшие объем и массу при одинако­вой мощности. Они обладают повышенной термостойкостью, хоро­шими частотными характеристиками, малым уровнем собственных шумов. Недостаток этих резисторов — в малой устойчивости к им­пульсным нагрузкам.

Композиционные резисторы СЗ, С4 с проводящим эле­ментом из полупроводникового материала (смеси графита с диэлек­триком) могут быть любой формы в виде массивного объема (С4) или пленки на любой поверхности (СЗ) различных номинальных со­противлений. Эти резисторы недороги.

Недостатками композиционных резисторов являются значитель­ная зависимость сопротивления от приложенного напряжения и час­тоты и повышенный уровень собственных шумов, что не позволяет использовать их в точных и высокочастотных устройствах РЭА.

– Конец работы –

Эта тема принадлежит разделу:

СПРАВОЧНИК МОЛОДОГО РАДИСТА

Автор: В.Г.Бодиловский - СПРАВОЧНИК МОЛОДОГО РАДИСТА. © Издательство «Высшая школа», 1975, © Издательство «Высшая школа», 1983, с изменениями....

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Резисторы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Проводниковые материалы
  Твердыми проводниками электрического тока являются метал­лы, металлические сплавы и некоторые модификации углерода. Среди металлических проводников различают: материалы, обладаю­щие

Полупроводниковые материалы
  Полупроводниковыми материалами являются твердые кристал­лические вещества с электронной проводимостью, которые по удель­ному электрическому сопротивлению при нормальной температуре

Магнитные материалы
  Основные сведения. Магнитные свойства веществ зависят от внутренней скрытой формы движения электрических зарядов, пред­ставляющих собой элементарные круговые токи, обладающие маг­ни

А — магнитно-мягкого материала, б — магнитно-твердого мате­риала, в — феррита с прямоугольной петлей гистерезиса
При перемагничивании ферромагнетиков в переменных магнит­ных полях возникают потери энергии, приводящие к их нагреву, что обусловлено потерями на гистерезис и динамическими. Потери энер­гии на гист

Индукция насыщения.
В обозначении магнитно-мягких ферритов на первом месте стоят цифры (перед буквами), указывающие значение начальной магнит­ной проницаемости, затем буквы, определяющие верхнюю границу частотного диа

Электроизоляционные материалы
  Вещества, обладающие очень малой электрической проводи­мостью, называются электроизоляционными материалами или диэлектриками. К ним относят газы, некоторые жидкости (м

Бумажные и металлобумажные конденсаторы
  Бумажные конденсаторы являются наиболее распространен­ной разновидностью конденсаторов постоянной емкости, содержат одну или несколько секций из двух металлических лент (как пра­вил

Пленочные конденсаторы
  В пленочных конденсаторах в качестве диэлектрика исполь­зуют пленки из различных полимерных материалов (полистирола, полипропилена или лавсана, фторопласта и др.). Обкладками в сек­

Слюдяные конденсаторы
  В слюдяных конденсаторах в качестве диэлектрика используют природный материал — слюду, обладающую высокой механической и электрической прочностью и относительно высокой диэлектричес

И стеклолленочиые конденсаторы
  И зависимости от электрических свойств, керамику служащей диэлектриком, к е р а м и ч е с к и е конденсаторы могут быть высоко­частотными, низкочастотными, термостабильными, термоко

А — проходной трубчатый КТП, б — опорный КДО, в — пластинчатый К10-7
Стеклопленочные конденсаторы заменяют дорогостоящие слюдяные, имеют меньшие по сравнению с ними габаритные размеры. Их используют для работы в.цепях постоянного тока и импульсных режимах. Эти конде

А — KB К с воздушным диэлектриком, б — КПК роторного типа
Воздушные конденсаторы полупеременной емкости выпускают плоскими и цилиндрическими. Плоские представляют собой много-пластинчатую конструкцию, установленную на керамической пла­

Катушки индуктивности
  Катушки индуктивности применяют в качестве элементов коле­бательных контуров, дросселей и для связи одних цепей с другими. Катушка индуктивности, которая служит для разделе

Трансформаторы
  У низкочастотных трансформаторов магнитный поток первичной обмотки почти целиком пронизывает витки вторичной обмотки. Эдс, наводимые в обмотках, пропорциональны их числам витков. От

Полупроводниковые резисторы
  К полупроводниковым резисторам относят терморезисторы, бо­лометры, позисторы, варисторы и фоторезисторы. Терморезисторы. Они представляют собой полупроводниковые тепловые п

А — изменения температурного коэффициента и сопротивления, б — вольтамперная
Обозначение терморезисторов состоит из трех-четырех элемен­тов, например, СП-21, СТ2-26, СТЗ-27, СТ4-15 и др. Буквы первого элемента СТ означают термочувствительное сопротивление, цифры второго эле

Микрофоны
  Микрофоны служат для преобразования энергии звуковых коле­баний в электрический ток звуковой чистоты. Их широко применяют в технике проводной и радиосвязи, радиовещания, телевидении

А — открытой, б — закрытой
Преимуществами конденса­торных микрофонов являются высокая чувствительность, рав­номерная частотная характе­ристика чувствительности, ши­рокий диапазон рабочих частот. Электретные мик­рофоны М

Головки громкоговорителей и телефоны
  Головки громкоговорителей служат для преобразо­вания энергии переменного тока в энергию звуковых волн Различа­ют электродинамические головки и прямого излучения. Работа электродинам

Головки звукоснимателей
  Для воспроизведения грамзаписи (в проигрывателях, электро­фонах, радиолах) служат пьезоэлектрические звукосниматели. Основным узлом звукоснимателя, определяющим качество воспроизве­

Магнитные головки
  Магнитные головки используются для записи звука на магнит­ную ленту, его воспроизведения с ленты или стирания (уничтоже­ния) записанной фонограммы. По назначению различают записы­ва

Краткие сведения
  Устройство. К электровакуумным относят электротехнические приборы, токопрохождение в которых обусловлено движением сво­бодных электронов в вакууме или среде разреженного газа. По пр

Условные обозначения
  Приемно-усилительные лампы, выпускаемые в СССР, имеют обозначения, состоящие из четырех элементов: первый эле­мент — число, обозначающее (округленно) напряжение накала в воль

Параметры
  В справочник вошли в основном миниатюрные лампы широкого применения. Все лампы подразделены на группы по числу электро­дов и преимущественной области применения, например кенотроны,

Условные обозначения полупроводниковых диодов
  Обозначение полупроводниковых диодов определяется ГОСТ 10862 — 72 и составляется из четырех элементов. Первый элемент — буква или цифра обозначает исходный полу­пров

Характеристики и параметры выпрямительных и универсальных диодов
  Выпрямительные диоды служат для выпрямления переменного тока низкой частоты. В основе выпрямительных свойств этих диодов лежит принцип односторонней проводимости электронно-дырочных

Типы диодов
Параметры КД204А КД204Б КД204В   Постоянное и импульсное обратное напряжение, В, при температуре от — 55

Выпрямительные столбы и блоки
  Выпрямительные столбы используют в высоковольтных выпря­мителях, а блоки — в мостовых схемах выпрямителей и схемах уд­воения выпрямленного напряжения. Параметры и ВАХ столбов и блок

Г — KU401) и схемы соединения диодов в блоках (д, е — удвоения, ас — мостовая)
  Таблица 80 Параметры     Типы диодов КШ06А КШ06Б КЦ106В КЦ106Г

Стабилитроны
  Стабилитроны применяют в качестве стабилизаторов или опорных элементов электрических цепей. Их работа основана на электрическом (лавинном или туннельном) пробое р-n-перехода под дей

А — Д815А — И, б — КС175А (KCI82A. K.CI91A, КЦ210Б, КС2ГЗБ). Й-КС211Б-Д, 3-КС482А (KC51SA, КС618А, КС522А, КС527А)
  Корпус у стабилитронов является положительным электродом. Если в их обозначение введена дополнительно буква П, например Д815АП, они имеют обратную полярность. Электрические параметр

Варикапы
  Варикапы применяют для осуществлений частотной и амплитуд­ной модуляции, а также в .схемах автоподстройки частоты (АПЧ) для перестройки резонансной частоты контура. Если эти.приборы

Туннельные и обращенные диоды
  Туннельные диоды обладают высоколегированными p-n-областями полупроводника. Концентрация легирующих примесей в областях на 2 — 3 порядка выше, чем в обычных диодах. Высокая концентр

Максимально допустимые прямой IПр макс U Обратный Iобр маке
токи; допустимый пиковый ток Iп прямой ветви; емкость Сд при заданном обратном смещении. Туннельные диоды АИ 101 (А, Б,

Тиристоры
  Тиристоры — полупроводниковые приборы с четырехслойной структурой типа р-n-р-n с тремя взаимодействующими между собой p-n-переходами (рис. 49, а). Крайние p-n-переходы структ

Светодиоды
  Основой полупроводниковых светодиодов является электронно-дырочный переход, который излучает свет при прохождении через него прямого тока. Излучение светодиодов может лежать в видим

Характеристики и параметры
  Характеристики. Статические характеристики отражают зависи­мость между токами и напряжениями во входных и выходных цепях транзистора. Свойства транзисторов в основном оценивают с по

Правила монтажа и эксплуатации
  По функциональному назначению транзисторы в радиоэлект­ронных схемах делят: на двухпереходные биполярные (усилительные, импульсные; малошумящие, высоковольтные, фототранзисторы); по

Транзисторы малой мощности
  Низкочастотные. Германиевые сплавные транзисторы р — n — р МП39Б, МП40А, МП41А применяются для работы в схемах уси­ления НЧ и выпускаются в металлическом корпусе (рис.

А - ГТ321. б — ГТ322, в - ГТ323
Таблица 112 Параметры Типы транзисторов     ГТ321А ГТ321Б ГТ321В ГТ321Г

А-КТ347 (KТ349, КТ350, КТ351), б-КТ373
Таблица 117 Параметры Типы транзисторов   КТ347А КТ347Б КТ347В Предельно

А — КТ325, б — КТ326, в — KT337 (КТ363), г — ГТ339, в — КТ345
  КТ325А КТ325Б КТ325В Статический коэффи­циент передачи тока при Uк=5 В и Iэ=10 мА . 30 —

А — ГТ403, б — ГТ404
  ГТ403 (А-Е, К) ГТ403 (Ж, И) Статический коэффициент передачи тока при Iк=0,45 А .....

Транзисторы большой мощности
  Низкочастотные. Транзисторы р-n-р ГТ703 (А — Д) применяют для работы в выходных каскадах УНЧ и выпускают в металличес­ком герметичном корпусе массой 15 г, с диапазоном рабочи

А — КТ805, б — ГТ806 (К.Т808, К.Т809)
  КТ805А КТ805Б Статический коэффициент переда­чи тока при Uк=10 В и Iк=2 А при +20 и — 55 °С соответстве

А — ГТ905, б — КТ907, в — КТ908, г — КТ911
Высоко- и сверхвысокочастотные.Транзисторы р-n-р ГТ905 (А, Б) выпускают в металлопластмассовом или металлостеклянном корпусе (рис. 69, а), массой соответственно 7 и 4,5 г (с

Основные показатели
  Свойства усилителей характеризуются рядом эксплуатационных и качественных показателей. Коэффициент усиления по напряжению, току или мощности по­казывает, во сколько

Фн, Ф0, Фв — фазовые сдвиги на нижних fH, средних f0 и верхних fв частотах
При ослаблении верхних частот звук становится глухим, бася-щим, а при малом усилении в области низких частот — металлическим, звенящим. Звуковые колебания, слышимые ухом человека, находятся в преде

Обратная связь в усилителях и схемы их построения
  Общие сведения. Под обратной связью (ОС) понимают связь между выходной и входной цепями усилителя. Функциональная схе­ма усилителя с ОС, где показаны цепь прямой передачи усилителя,

Рабочие режимы усилительных элементов
  Активными элементами усилителей являются транзисторы и электронные лампы, включаемые между входным и выходным уст­ройствами. Энергетические и качественные показатели усилительных эл

Способы обеспечения рабочего режима транзистора
  Электропитание цепей коллектора обычно осуществляется от об­щего источника постоянного тока (гальванической батареи или вып­рямителя переменного напряжения сети). Для устранения меж

А — с помощью делителя, б — через гасящий резистор, в — фиксированным током
Способы подачи смещения. Фиксированное смещение можно осуществлять фиксированным током или напряжением. Смещение фиксированным напряжением база — эмиттер создается от общего источника Ек

А — эмиттерная с помощью ООС по току, б — коллекторная с ООС по на­пряжению, в — комбинированная с ООС по току и напряжению
  Более высокую стабильность работы обеспечивают схемы с ком­бинированной ООС потоку и напряжению (рис. 82, б). Обычно комбинированная обратная связь вводится лишь для постоянного ток

А — с терморезистором, б — с терморезистором и линейными резисторами, в — с диодом
  В делитель, подключенный к базе (рис. 83, а), вместо резистора R2 включают терморезистор, который при нормальной температуре имеет сопротивление, необходимое для устан

Сравнение схем включения транзисторов
  Схемы включения биполярных транзисторов. Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ (см. рис. 54) приведены в табл. 132. В схеме с общей базой эмиттерны

А — сдвоенного эмиттерного повторителя, б — усилителя на разноструктурных транзисторах, в — каскодной
Схемы составных транзисторов. Составной транзистор пред­ставляет собой комбинацию двух (и более) транзисторов, соеди­ненных таким образом, что число внешних выводов этой комбинированной схемы равно

Выходные каскады усилителей
  Назначение выходных каскадов. Выходной каскад предназначен для отдачи в нагрузку заданной мощности сигнала при высоком кпд и минимальном уровне нелинейных и частотных искажений. Осн

А — с непосредственным подключением, б — через резисторно-емкостное устрой­ство, в — с помощью трансформатора и дросселя
Способы подключения нагрузки. По способу подключения нагруз­ки различают выходные каскады с непосредственным включением нагрузки, резисторные, трансформаторные и дроссельные. При непоср

А — на разноструктурных транзисторах, б — на составных транзисторах
К преимуществам двухтактных схем относят: уменьшение не­линейных искажений по сравнению с однотактными схемами при одинаковой полезной мощности; отсутствие подмагничивания сер­дечника выходного тра

Каскады предварительного усиления
  Общие сведения. Предварительный усилитель усиливает коле­бания напряжения или тока источника сигнала до значений, кото­рые необходимо подать на вход оконечного каскада для получения

А — последовательным, б — параллельным
Схемы усилительных каскадов с последовательным и параллельным включением трансформатора показаны на рис. 95, а, б. Схе« ма с последовательно включенным трансформатором не содержит резистора

Эмиттерные повторители и фазоинверсные усилители
  Эмиттерные повторители ЭП (рис. 97, а) являются разновид­ностью усилителей на резисторах с ООС. У эмиттерного повторите­ля транзистор включен по схеме с ОК (коллектор заземле

Усилители постоянного тока
Общие сведения. Усилители постоянного тока УПТ могут уси­ливать электрические колебания со спектром частот от 0 до fв, оп­ределяемой назначением и условиями работы. По п

Устройство и принцип действия генераторов
  Общие сведения. Электронными генераторами гармонических колебаний называют автоколебательные системы, в которых энер­гия источников питания постоянного тока преобразуется в энергию

Рабочие режимы генераторов
  Исходный режим работы электронного генератора устанавлива­ется значением напряжения смещения, определяющего положение рабочей точки на характеристиках. Различают два основных режима

Схемы автогенераторов
  Кроме рассмотренных ранее схем с трансформаторной связью широко распространены трехточечные схемы с индуктивной авто­трансформаторной (рис. 104, а) и емкостной (рис. 104,6) ОС, в ко

Стабилизация частоты генераторов
  Общие сведения. Частота колебаний автогенератора определяет­ся его режимом работы и параметрами контура. В процессе работы генератор подвергается различным воздействиям (изменениям

W2к — w1к)/w1к=Ск/2С0~ 0,005-0,5 %.
На рис. 106, б, г показана зависимость реактивного хк и полного 2К сопротивлений кварца от частоты (без учета активных потерь в нем). Из графиков следует, что при w

Основные качественные показатели приемников
  В соответствии с рекомендациями Международного консульта­тивного комитета по радио (МККР) спектр радиочастот делится на диапазоны, которые приведены в табл. 133. Важнейшими

Классификация приемников
  В зависимости от электроакустических показателей радиопри­емники делят на пять классов: высший, 1, II, III и IV. Стандарт охватывает радиовещательные приемники всех типов, включая т

Структурные схемы приемников
  По принципу усиления принимаемого сигнала различают радио-, вещательные приемники прямого усиления, в которых сигнал уси­ливается непосредственно, и супергетеродинные, в которых уси

А — емкостная, б — индук­тивно-емкостная
  Коротковолновый диапазон при обычном значении коэффициен­та перекрытия охватывает много участков, отведенных для работы радиовещательных станций, что затрудняет настройку. Для удобс

A — c заземленной средней точкой катушки связи, б — с подключением тракта ДВ, СВ, KB
Связь входного контура с антенной. Чаще всего используются емкостная и индуктивная связи входного контура с антенной и реже индуктивно-емкостная связь. Емкостная связь (см. рис. 112

Транзисторного приемника: а — одной, б — двух
Пределы настройки резонансных контуров магнитных антенн супергетеродинных приемников не должны выходить за пределы стандартных радиовещательных диапазонов (для СВ 1605 — 525 кГц, для ДВ 408 — 150 к

А — резисторная, б — трансформаторная
Апериодические УРЧ увеличивают лишь отношение сиг­нал/шум и чувствительность приемника. Наиболее часто их приме­няют в транзисторных приемниках прямого усиления на ДВ- и СВ-диапазонах. В качестве н

Преобразователи частоты
  Преобразовательные каскады преобразуют высокочастотные колебания принимаемого сигнала в колебания промежуточной часто­ты, на которой осуществляется основное усиление сигнала. Преобр

Усилители промежуточной частоты
  Общие сведения.Усилители промежуточной частоты УПЧ в су­пергетеродинном приемнике служат для усиления выходного сигнала преобразователя частоты и обеспечения избира

Высокочастотного тракта приемника
  Регулировка усиления. Для обеспечения постоянного уровня выходного сигнала в приемниках используют регуляторы усиления и громкости. Различают ручные и автоматические регулировки уси

Классификация интегральных схем
  По конструктивно-технологическому исполнению различают полу­проводниковые, пленочные и гибридные ИС. К полупроводниковым относят ПМС (полупроводниковые интег­ральные

Условные обозначения интегральных схем
  Обозначение ИС состоит из четырех элементов: первый эле­мент — цифра, указывающая конструктивно-технологическую группу (цифры 1, 5, 7 указывают, что ИС полупроводниковые; 2,

К1УС221А КДУС221Б
  Напряжение источника-питания, В..... +6,3 +6,3 Входное сопротивле-ние, кОм...... 2 2 Коэффициент усиления на частоте 12 кГц . . „ 250 400 Постоянное напря

Микросхемы серии К226
  Выпускают с усилителями низкой частоты в прямоугольном ме-таллостеклянном корпусе с 15 выводами (рис. 165, а, б), массой 4,5 г, с диапазоном рабочих температур от — 45 до 4-55°С.

Бодиловский 3. Г.
Б75 Справочник молодого радиста: 4-е изд., перераб. и доп. — М.: Высш. шк., 1983. — 320 с., ил. — (Профтехобразование. Библиотечная серия). В пер. № 5: 1 р. 20 к., в пер. № 7: 1 р. 40 к.

ББК 32.844 6Ф2.12
Редактор М. В. Золоева. Художественный редактор Т. В. Панина. Художник А. И. Шавард. Технический редактор Л. А. Григорчук. Корректор

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги